Rationality in map and hypermap enumeration by genus
Algebra i analiz, Tome 29 (2017) no. 3, pp. 23-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2017_29_3_a1,
     author = {P. Zograf and M. Kazarian},
     title = {Rationality in map and hypermap enumeration by genus},
     journal = {Algebra i analiz},
     pages = {23--33},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_3_a1/}
}
TY  - JOUR
AU  - P. Zograf
AU  - M. Kazarian
TI  - Rationality in map and hypermap enumeration by genus
JO  - Algebra i analiz
PY  - 2017
SP  - 23
EP  - 33
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_3_a1/
LA  - ru
ID  - AA_2017_29_3_a1
ER  - 
%0 Journal Article
%A P. Zograf
%A M. Kazarian
%T Rationality in map and hypermap enumeration by genus
%J Algebra i analiz
%D 2017
%P 23-33
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_3_a1/
%G ru
%F AA_2017_29_3_a1
P. Zograf; M. Kazarian. Rationality in map and hypermap enumeration by genus. Algebra i analiz, Tome 29 (2017) no. 3, pp. 23-33. http://geodesic.mathdoc.fr/item/AA_2017_29_3_a1/

[1] Adrianov N. M., “Analog formuly Kharera–Tsagira dlya odnokletochnykh dvukrashennykh kart”, Funkts. anal. i ego pril., 31:3 (1997), 1–9 | DOI | MR | Zbl

[2] Carrell S. R., Chapuy G., “Simple recurrence formulas to count maps on orientable surfaces”, J. Combin. Theory Ser. A, 133 (2015), 58–75 | DOI | MR | Zbl

[3] Giorgetti A., Walsh T. R. S., Enumeration of hypermaps of a given genus, 2015, arXiv: 1510.09019

[4] Harer J., Zagier D., “The Euler characteristic of the moduli space of curves”, Invent. Math., 85:3 (1986), 457–485 | DOI | MR | Zbl

[5] Jackson D. M., “Counting cycles in permutations by group characters, with an application to a topological problem”, Trans. Amer. Math. Soc., 299:2 (1987), 785–801 | DOI | MR | Zbl

[6] Kazaryan M. E., Lando S. K., “Kombinatornye resheniya integriruemykh ierarkhii”, Uspekhi mat. nauk, 70:3 (2015), 77–106 | DOI | MR | Zbl

[7] Kazarian M., Zograf P., “Virasoro constraints and topological recursion for Grothendieck's dessin counting”, Lett. Math. Phys., 105:8 (2015), 1057–1084 | DOI | MR | Zbl

[8] Lando S. K., Zvonkin A. K., Grafy na poverkhnostyakh i ikh prilozheniya, Izd-vo MTsNMO, M., 2010

[9] Mednykh A., Nedela R., “Enumeration of unrooted maps of a given genus”, J. Combin. Theory Ser. B, 96:5 (2006), 706–729 | DOI | MR | Zbl

[10] Mednykh A., Nedela R., “Enumeration of unrooted hypermaps of a given genus”, Discrete Math., 310:3 (2010), 518–526 | DOI | MR | Zbl

[11] Tutte W. T., “A census of planar maps”, Canad. J. Math., 15:2 (1963), 249–271 | DOI | MR | Zbl

[12] Walsh T. R. S., “Hypermaps versus bipartite maps”, J. Combin. Theory Ser. B, 18:2 (1975), 155–163 | DOI | MR | Zbl

[13] Walsh T. R. S., Lehman A. B., “Counting rooted maps by genus. I”, J. Combin. Theory Ser. B, 13 (1972), 192–218 | DOI | MR | Zbl

[14] Zograf P., “Enumeration of Grothendieck's dessins and KP hierarchy”, Int. Math. Res. Not. IMRH, 2015:24 (2015), 13533–13544 | DOI | MR | Zbl