Rectangular lattices of cylindrical quantum waveguides.~I. Spectral problems in a~finite cross
Algebra i analiz, Tome 29 (2017) no. 3, pp. 1-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2017_29_3_a0,
     author = {F. L. Bakharev and S. G. Matveenko and S. A. Nazarov},
     title = {Rectangular lattices of cylindrical quantum {waveguides.~I.} {Spectral} problems in a~finite cross},
     journal = {Algebra i analiz},
     pages = {1--22},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_3_a0/}
}
TY  - JOUR
AU  - F. L. Bakharev
AU  - S. G. Matveenko
AU  - S. A. Nazarov
TI  - Rectangular lattices of cylindrical quantum waveguides.~I. Spectral problems in a~finite cross
JO  - Algebra i analiz
PY  - 2017
SP  - 1
EP  - 22
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_3_a0/
LA  - ru
ID  - AA_2017_29_3_a0
ER  - 
%0 Journal Article
%A F. L. Bakharev
%A S. G. Matveenko
%A S. A. Nazarov
%T Rectangular lattices of cylindrical quantum waveguides.~I. Spectral problems in a~finite cross
%J Algebra i analiz
%D 2017
%P 1-22
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_3_a0/
%G ru
%F AA_2017_29_3_a0
F. L. Bakharev; S. G. Matveenko; S. A. Nazarov. Rectangular lattices of cylindrical quantum waveguides.~I. Spectral problems in a~finite cross. Algebra i analiz, Tome 29 (2017) no. 3, pp. 1-22. http://geodesic.mathdoc.fr/item/AA_2017_29_3_a0/

[1] Kuchment P., “Graph models for waves in thin structures”, Waves Random Media, 12:4 (2002), R1–R24 | DOI | MR | Zbl

[2] Kuchment P. (Ed.), Quantum graphs and their applications, Waves Random Media, 14, no. Special issue, no. 1, 2004 | MR

[3] Kuchment P., Zeng H., “Asymptotics of spectra of Neumann Laplacians in thin domains”, Advances in Differential Equations and Mathematical Physics, Contemp. Math., 387, Amer. Math. Soc., Providence, RI, 2003, 199–213 | DOI | MR

[4] Exner P., Post O., “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl

[5] Grieser D., “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl

[6] Nazarov S. A., “Ogranichennye resheniya v $T$-obraznom volnovode i spektralnye svoistva lestnitsy Dirikhle”, Zh. vychisl. mat. i mat. fiz., 54:8 (2014), 1299–1318 | DOI | MR | Zbl

[7] Nazarov S. A., “Stroenie spektra reshetki kvantovykh volnovodov i ogranichennye resheniya modelnoi zadachi na poroge”, Dokl. RAN, 458:6 (2014), 636–640 | DOI | Zbl

[8] Nazarov S. A., Ruotsalainen K., Uusitalo P., “Asymptotics of the spectrum of the Dirichlet Laplacian on a thin carbon nano-structure”, C. R. Mecanique, 343 (2015), 360–364 | DOI

[9] Nazarov S. A., “Spektr pryamougolnykh reshetok kvantovykh volnovodov”, Izv. RAN. Ser. mat. (to appear)

[10] Nazarov S. A., “Lokalizatsiya uprugikh kolebanii v krestoobraznykh ploskikh ortotropnykh volnovodakh”, Dokl. RAN, 458:1 (2014), 42–46 | DOI | MR

[11] Bakharev F. L., Matveenko S. G., Nazarov S. A., “Spektry prostranstvennykh krestoobraznykh i reshetchatykh kvantovykh volnovodov”, Dokl. RAN, 463:6 (2015), 650–654 | DOI | MR | Zbl

[12] Bakharev F. L., Matveenko S. G., Nazarov S. A., “Diskretnyi spektr krestoobraznykh volnovodov”, Algebra i analiz, 28:2 (2016), 32–45 | MR

[13] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 | MR

[14] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operatos, Acad. Press [Harcourt Brace Jovanovich Publ.], New York, 1975 | MR | Zbl

[15] Leis R., Initial boundary value problems of mathematical physics, B. G. Teubner, Stuttgart, 1986 | MR

[16] Pólya G., Szegö G., Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951 | MR | Zbl

[17] Osmolovskii V. G., Nelineinaya zadacha Shturma–Liuvillya, Izd-vo SPbGU, SPb., 2003

[18] Kato T., Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, 2nd ed., Springer-Verlag, Berlin–New York, 1976 | MR | Zbl

[19] Bakharev F. L., Matveenko S. G., Nazarov S. A., Examples of plentiful discrete spectra in infinite spatial cruciform quantum waveguides, arXiv: 1604.05564 | MR

[20] Nazarov S. A., “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teor. i mat. fiz., 167:2 (2011), 239–263 | DOI

[21] Nazarov S. A., “Pochti stoyachie volny v periodicheskom volnovode s rezonatorom i okoloporogovye sobstvennye chisla”, Algebra i analiz, 28:3 (2016), 111–160 | MR