Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_3_a0, author = {F. L. Bakharev and S. G. Matveenko and S. A. Nazarov}, title = {Rectangular lattices of cylindrical quantum {waveguides.~I.} {Spectral} problems in a~finite cross}, journal = {Algebra i analiz}, pages = {1--22}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_3_a0/} }
TY - JOUR AU - F. L. Bakharev AU - S. G. Matveenko AU - S. A. Nazarov TI - Rectangular lattices of cylindrical quantum waveguides.~I. Spectral problems in a~finite cross JO - Algebra i analiz PY - 2017 SP - 1 EP - 22 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2017_29_3_a0/ LA - ru ID - AA_2017_29_3_a0 ER -
%0 Journal Article %A F. L. Bakharev %A S. G. Matveenko %A S. A. Nazarov %T Rectangular lattices of cylindrical quantum waveguides.~I. Spectral problems in a~finite cross %J Algebra i analiz %D 2017 %P 1-22 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2017_29_3_a0/ %G ru %F AA_2017_29_3_a0
F. L. Bakharev; S. G. Matveenko; S. A. Nazarov. Rectangular lattices of cylindrical quantum waveguides.~I. Spectral problems in a~finite cross. Algebra i analiz, Tome 29 (2017) no. 3, pp. 1-22. http://geodesic.mathdoc.fr/item/AA_2017_29_3_a0/
[1] Kuchment P., “Graph models for waves in thin structures”, Waves Random Media, 12:4 (2002), R1–R24 | DOI | MR | Zbl
[2] Kuchment P. (Ed.), Quantum graphs and their applications, Waves Random Media, 14, no. Special issue, no. 1, 2004 | MR
[3] Kuchment P., Zeng H., “Asymptotics of spectra of Neumann Laplacians in thin domains”, Advances in Differential Equations and Mathematical Physics, Contemp. Math., 387, Amer. Math. Soc., Providence, RI, 2003, 199–213 | DOI | MR
[4] Exner P., Post O., “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl
[5] Grieser D., “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl
[6] Nazarov S. A., “Ogranichennye resheniya v $T$-obraznom volnovode i spektralnye svoistva lestnitsy Dirikhle”, Zh. vychisl. mat. i mat. fiz., 54:8 (2014), 1299–1318 | DOI | MR | Zbl
[7] Nazarov S. A., “Stroenie spektra reshetki kvantovykh volnovodov i ogranichennye resheniya modelnoi zadachi na poroge”, Dokl. RAN, 458:6 (2014), 636–640 | DOI | Zbl
[8] Nazarov S. A., Ruotsalainen K., Uusitalo P., “Asymptotics of the spectrum of the Dirichlet Laplacian on a thin carbon nano-structure”, C. R. Mecanique, 343 (2015), 360–364 | DOI
[9] Nazarov S. A., “Spektr pryamougolnykh reshetok kvantovykh volnovodov”, Izv. RAN. Ser. mat. (to appear)
[10] Nazarov S. A., “Lokalizatsiya uprugikh kolebanii v krestoobraznykh ploskikh ortotropnykh volnovodakh”, Dokl. RAN, 458:1 (2014), 42–46 | DOI | MR
[11] Bakharev F. L., Matveenko S. G., Nazarov S. A., “Spektry prostranstvennykh krestoobraznykh i reshetchatykh kvantovykh volnovodov”, Dokl. RAN, 463:6 (2015), 650–654 | DOI | MR | Zbl
[12] Bakharev F. L., Matveenko S. G., Nazarov S. A., “Diskretnyi spektr krestoobraznykh volnovodov”, Algebra i analiz, 28:2 (2016), 32–45 | MR
[13] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 | MR
[14] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operatos, Acad. Press [Harcourt Brace Jovanovich Publ.], New York, 1975 | MR | Zbl
[15] Leis R., Initial boundary value problems of mathematical physics, B. G. Teubner, Stuttgart, 1986 | MR
[16] Pólya G., Szegö G., Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951 | MR | Zbl
[17] Osmolovskii V. G., Nelineinaya zadacha Shturma–Liuvillya, Izd-vo SPbGU, SPb., 2003
[18] Kato T., Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, 2nd ed., Springer-Verlag, Berlin–New York, 1976 | MR | Zbl
[19] Bakharev F. L., Matveenko S. G., Nazarov S. A., Examples of plentiful discrete spectra in infinite spatial cruciform quantum waveguides, arXiv: 1604.05564 | MR
[20] Nazarov S. A., “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teor. i mat. fiz., 167:2 (2011), 239–263 | DOI
[21] Nazarov S. A., “Pochti stoyachie volny v periodicheskom volnovode s rezonatorom i okoloporogovye sobstvennye chisla”, Algebra i analiz, 28:3 (2016), 111–160 | MR