Passage through a~potential barrier and multiple wells
Algebra i analiz, Tome 29 (2017) no. 2, pp. 242-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

The semiclassical limit as the Planck constant $\hbar$ tends to $0$ is considered for bound states of a one-dimensional quantum particle in multiple potential wells separated by barriers. It is shown that, for each eigenvalue of the Schrödinger operator, the Bohr–Sommerfeld quantization condition is satisfied for at least one potential well. The proof of this result relies on a study of real wave functions in a neighborhood of a potential barrier. It is shown that, at least from one side, the barrier fixes the phase of the wave functions in the same way as a potential barrier of infinite width. On the other hand, it turns out that for each well there exists an eigenvalue in a small neighborhood of every point satisfying the Bohr–Sommerfeld condition.
Keywords: Schrödinger equation, multiple potential wells, Bohr–Sommerfeld quantization conditions, fixing conditions.
@article{AA_2017_29_2_a8,
     author = {D. R. Yafaev},
     title = {Passage through a~potential barrier and multiple wells},
     journal = {Algebra i analiz},
     pages = {242--273},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_2_a8/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - Passage through a~potential barrier and multiple wells
JO  - Algebra i analiz
PY  - 2017
SP  - 242
EP  - 273
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_2_a8/
LA  - en
ID  - AA_2017_29_2_a8
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T Passage through a~potential barrier and multiple wells
%J Algebra i analiz
%D 2017
%P 242-273
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_2_a8/
%G en
%F AA_2017_29_2_a8
D. R. Yafaev. Passage through a~potential barrier and multiple wells. Algebra i analiz, Tome 29 (2017) no. 2, pp. 242-273. http://geodesic.mathdoc.fr/item/AA_2017_29_2_a8/

[1] Agmon S., Lectures on exponential decay of solutions of second order elliptic equations, Math. Notes, 29, Princeton Univ., Princeton, 1982 | MR | Zbl

[2] Buslaev V. S., “Kvaziklassicheskoe priblizhenie dlya uravnenei s periodicheskimi koeffitsientami”, Uspekhi mat. nauk, 42:6 (1987), 77–98 | MR | Zbl

[3] Buslaev V. S., Dmitrieva L. A., “Blokhovskii elektron vo vneshnem pole”, Algebra i analiz, 1:2 (1989), 1–29 | MR | Zbl

[4] Buslaev V., Grigis A., “Turning points for adiabatically perturbed periodic equations”, J. Anal. Math., 84 (2001), 67–143 | DOI | MR | Zbl

[5] Colin de Verdière I., Parisse B., “Singular Bohr-Sommerfeld rules”, Comm. Math. Phys., 205:2 (1999), 459–500 | DOI | MR | Zbl

[6] Dimassi M., Sjöstrand J., Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Ser., 268, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[7] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR

[8] Ford K. W., Hill D. L., Wakeno M., Wheeler J. A., “Quantum effect near a barrier maximum”, Ann. Physics, 7 (1959), 239–258 | DOI | MR | Zbl

[9] Harrell E. M., “On the rate of asymptotic eigenvalue degeneracy”, Comm. Math. Phys., 60:1 (1978), 73–95 | DOI | MR | Zbl

[10] Harrell E. M., “Double wells”, Comm. Math. Phys., 75:3 (1980), 239–261 | DOI | MR | Zbl

[11] Helffer B., Robert D., “Puits de potentiels généralisés et asimptotique semi-classique”, Ann. Inst. H. Poincaré Phys. Théor., 41:3 (1984), 291–331 | MR | Zbl

[12] Helffer B., Sjöstrand J., “Multiple wells in the semi-classical limit. I”, Comm. Partial Differential Equations, 9:4 (1984), 337–408 | DOI | MR | Zbl

[13] Jeffreys H., “On certain approximate solutions of linear differential equations of the second order”, Proc. London Math. Soc. (2), 23:1 (1925), 428–436 | DOI | MR

[14] Kirsch W., Simon B., “Universal lower bounds on eigenvalue splittings for one dimensional Schrödinger operators”, Comm. Math. Phys., 97:3 (1985), 453–460 | DOI | MR | Zbl

[15] Kramers H. A., “Wellenmechanik und halbzahlige Quantisiering”, Z. Phys., 39 (1926), 828–840 | DOI | Zbl

[16] Landau L. D., Lifshits E. M., Mekhanika, Fizmatgiz, M., 1958 | MR

[17] Landau L. D., Lifshits E. M., Kvantovaya mekhanika. Nerelyativistskaya teoriya, Fizmatgiz, M., 1958

[18] Langer R. E., “On the connection formulas and the solutions of the wave equation”, Phys. Rev., 51 (1937), 669–676 | DOI | Zbl

[19] Langer R. E., “The asymptotic solutions of ordinary linear differential equations of the second order, with a special reference to a turning point”, Trans. Amer. Math. Soc., 67 (1949), 461–490 | DOI | MR | Zbl

[20] Nakamura S., “A remark on eigenvalue splittings for one-dimensional double-well Hamiltonians”, Lett. Math. Phys., 11:4 (1986), 337–340 | DOI | MR | Zbl

[21] Olver F. W. J., Asymptotics and special functions, Acad. Press, New York–London, 1974 | MR | Zbl

[22] Robert D., Autour de l'approximation semi-classique, Progr. Math., 68, Birkhäuser, Boston, 1987 | MR | Zbl

[23] Simon B., “Semiclassical analysis of low lying eigenvalues. II. Tunneling”, Ann. of Math. (2), 120:2 (1984), 89–118 | DOI | MR | Zbl

[24] Titchmarsh E. C., Eigenfunction expansions associated with second-order differential equations, v. 1, Clarendon Press, Oxford, 1946 | MR | Zbl

[25] Yafaev D. R., “The semiclassical limit of eigenfunctions of the Schrödinger equation and the Bohr–Sommerfeld quantization condition, revisited”, Algebra i analiz, 22:6 (2011), 270–291 | MR | Zbl