Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_2_a8, author = {D. R. Yafaev}, title = {Passage through a~potential barrier and multiple wells}, journal = {Algebra i analiz}, pages = {242--273}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_2_a8/} }
D. R. Yafaev. Passage through a~potential barrier and multiple wells. Algebra i analiz, Tome 29 (2017) no. 2, pp. 242-273. http://geodesic.mathdoc.fr/item/AA_2017_29_2_a8/
[1] Agmon S., Lectures on exponential decay of solutions of second order elliptic equations, Math. Notes, 29, Princeton Univ., Princeton, 1982 | MR | Zbl
[2] Buslaev V. S., “Kvaziklassicheskoe priblizhenie dlya uravnenei s periodicheskimi koeffitsientami”, Uspekhi mat. nauk, 42:6 (1987), 77–98 | MR | Zbl
[3] Buslaev V. S., Dmitrieva L. A., “Blokhovskii elektron vo vneshnem pole”, Algebra i analiz, 1:2 (1989), 1–29 | MR | Zbl
[4] Buslaev V., Grigis A., “Turning points for adiabatically perturbed periodic equations”, J. Anal. Math., 84 (2001), 67–143 | DOI | MR | Zbl
[5] Colin de Verdière I., Parisse B., “Singular Bohr-Sommerfeld rules”, Comm. Math. Phys., 205:2 (1999), 459–500 | DOI | MR | Zbl
[6] Dimassi M., Sjöstrand J., Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Ser., 268, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[7] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR
[8] Ford K. W., Hill D. L., Wakeno M., Wheeler J. A., “Quantum effect near a barrier maximum”, Ann. Physics, 7 (1959), 239–258 | DOI | MR | Zbl
[9] Harrell E. M., “On the rate of asymptotic eigenvalue degeneracy”, Comm. Math. Phys., 60:1 (1978), 73–95 | DOI | MR | Zbl
[10] Harrell E. M., “Double wells”, Comm. Math. Phys., 75:3 (1980), 239–261 | DOI | MR | Zbl
[11] Helffer B., Robert D., “Puits de potentiels généralisés et asimptotique semi-classique”, Ann. Inst. H. Poincaré Phys. Théor., 41:3 (1984), 291–331 | MR | Zbl
[12] Helffer B., Sjöstrand J., “Multiple wells in the semi-classical limit. I”, Comm. Partial Differential Equations, 9:4 (1984), 337–408 | DOI | MR | Zbl
[13] Jeffreys H., “On certain approximate solutions of linear differential equations of the second order”, Proc. London Math. Soc. (2), 23:1 (1925), 428–436 | DOI | MR
[14] Kirsch W., Simon B., “Universal lower bounds on eigenvalue splittings for one dimensional Schrödinger operators”, Comm. Math. Phys., 97:3 (1985), 453–460 | DOI | MR | Zbl
[15] Kramers H. A., “Wellenmechanik und halbzahlige Quantisiering”, Z. Phys., 39 (1926), 828–840 | DOI | Zbl
[16] Landau L. D., Lifshits E. M., Mekhanika, Fizmatgiz, M., 1958 | MR
[17] Landau L. D., Lifshits E. M., Kvantovaya mekhanika. Nerelyativistskaya teoriya, Fizmatgiz, M., 1958
[18] Langer R. E., “On the connection formulas and the solutions of the wave equation”, Phys. Rev., 51 (1937), 669–676 | DOI | Zbl
[19] Langer R. E., “The asymptotic solutions of ordinary linear differential equations of the second order, with a special reference to a turning point”, Trans. Amer. Math. Soc., 67 (1949), 461–490 | DOI | MR | Zbl
[20] Nakamura S., “A remark on eigenvalue splittings for one-dimensional double-well Hamiltonians”, Lett. Math. Phys., 11:4 (1986), 337–340 | DOI | MR | Zbl
[21] Olver F. W. J., Asymptotics and special functions, Acad. Press, New York–London, 1974 | MR | Zbl
[22] Robert D., Autour de l'approximation semi-classique, Progr. Math., 68, Birkhäuser, Boston, 1987 | MR | Zbl
[23] Simon B., “Semiclassical analysis of low lying eigenvalues. II. Tunneling”, Ann. of Math. (2), 120:2 (1984), 89–118 | DOI | MR | Zbl
[24] Titchmarsh E. C., Eigenfunction expansions associated with second-order differential equations, v. 1, Clarendon Press, Oxford, 1946 | MR | Zbl
[25] Yafaev D. R., “The semiclassical limit of eigenfunctions of the Schrödinger equation and the Bohr–Sommerfeld quantization condition, revisited”, Algebra i analiz, 22:6 (2011), 270–291 | MR | Zbl