``Irrational'' constructions in convex geometry
Algebra i analiz, Tome 29 (2017) no. 1, pp. 222-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several ways to define various “irrational” functions of convex bodies, like the geometric mean or power functions, are discussed.
Keywords: convex body, Minkowski sum, support function, ellipsoid, polar body, polarity map.
@article{AA_2017_29_1_a9,
     author = {V. Milman and L. Rotem},
     title = {``Irrational'' constructions in convex geometry},
     journal = {Algebra i analiz},
     pages = {222--236},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_1_a9/}
}
TY  - JOUR
AU  - V. Milman
AU  - L. Rotem
TI  - ``Irrational'' constructions in convex geometry
JO  - Algebra i analiz
PY  - 2017
SP  - 222
EP  - 236
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_1_a9/
LA  - en
ID  - AA_2017_29_1_a9
ER  - 
%0 Journal Article
%A V. Milman
%A L. Rotem
%T ``Irrational'' constructions in convex geometry
%J Algebra i analiz
%D 2017
%P 222-236
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_1_a9/
%G en
%F AA_2017_29_1_a9
V. Milman; L. Rotem. ``Irrational'' constructions in convex geometry. Algebra i analiz, Tome 29 (2017) no. 1, pp. 222-236. http://geodesic.mathdoc.fr/item/AA_2017_29_1_a9/

[1] Artstein-Avidan S., Milman V., “The concept of duality for measure projections of convex bodies”, J. Funct. Anal., 254:10 (2008), 2648–2666 | DOI | MR | Zbl

[2] Artstein-Avidan S., Milman V., “The concept of duality in convex analysis, and the characterization of the Legendre transform”, Ann. of Math. (2), 169:2 (2009), 661–674 | DOI | MR | Zbl

[3] Asplund E., “Averaged norms”, Israel J. Math., 5:4 (1967), 227–233 | DOI | MR | Zbl

[4] Bhatia R., Matrix analysis, Grad. Texts in Math., 169, Springer-Verlag, New York, 1997 | DOI | MR

[5] Böröczky K. J., Lutwak E., Deane Yang, Gaoyong Zhang, “The log-Brunn–Minkowski inequality”, Adv. Math., 231:4 (2012), 1974–1997 | DOI | MR | Zbl

[6] Böröczky K. J., Schneider R., “A characterization of the duality mapping for convex bodies”, Geom. Funct. Anal., 18:3 (2008), 657–667 | DOI | MR | Zbl

[7] Cordero-Erausquin D., Klartag B., “Interpolations, convexity and geometric inequalities”, Geometric aspects of functional analysis, Israel Seminar 2006–2010, Lecture Notes in Math., 2050, Springer, Berlin–Heidelberg, 2012, 151–168 | DOI | MR | Zbl

[8] Fedotov V. P., “Srednee geometricheskoe vypuklykh mnozhestv”, Zap. nauchn. semin. LOMI, 45, 1974, 113–116 | MR | Zbl

[9] Firey W. J., “$p$-means of convex bodies”, Math. Scand., 10 (1962), 17–24 | DOI | MR | Zbl

[10] Gruber P. M., “The endomorphisms of the lattice of norms in finite dimensions”, Abh. Math. Sem. Univ. Hamburg, 62:1 (1992), 179–189 | DOI | MR | Zbl

[11] Lawson J., Lim Y., “The geometric mean, matrices, metrics, and more”, Amer. Math. Monthly, 108:9 (2001), 797–812 | DOI | MR | Zbl

[12] Lutwak E., “The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem”, J. Differential Geom., 38:1 (1993), 131–150 | DOI | MR | Zbl

[13] Lutwak E., “The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas”, Adv. Math., 118:2 (1996), 244–294 | DOI | MR | Zbl

[14] Milman V., Rotem L., “Non-standard constructions in convex geometry; geometric means of convex bodies”, IMA Vol. Math. Appl. (to appear)

[15] Molchanov I., “Continued fractions built from convex sets and convex functions”, Comm. Contemp. Math., 17:5 (2015), 1550003 | DOI | MR | Zbl

[16] Newman D. J., “A simplified version of the fast algorithms of Brent and Salamin”, Math. Comp., 44:169 (1985), 207–210 | DOI | MR | Zbl

[17] Pusz W., Woronowicz S. L., “Functional calculus for sesquilinear forms and the purification map”, Rep. Mathematical Phys., 8:2 (1975), 159–170 | DOI | MR | Zbl

[18] Rotem L., Banach limit in convexity and geometric means for convex bodies, submitted | MR

[19] Rotem L., “Algebraically inspired results on convex functions and bodies”, Comm. Contemp. Math., 18:6 (2016), 1650027 | DOI | MR | Zbl

[20] Schneider R., Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 151, 2nd. ed., Cambridge Univ. Press, Cambridge, 2014 | MR | Zbl

[21] Semmes S., “Interpolation of Banach spaces, differential geometry and differential equations”, Rev. Mat. Iberoamericana, 4:1 (1988), 155–176 | DOI | MR | Zbl