Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_1_a9, author = {V. Milman and L. Rotem}, title = {``Irrational'' constructions in convex geometry}, journal = {Algebra i analiz}, pages = {222--236}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_1_a9/} }
V. Milman; L. Rotem. ``Irrational'' constructions in convex geometry. Algebra i analiz, Tome 29 (2017) no. 1, pp. 222-236. http://geodesic.mathdoc.fr/item/AA_2017_29_1_a9/
[1] Artstein-Avidan S., Milman V., “The concept of duality for measure projections of convex bodies”, J. Funct. Anal., 254:10 (2008), 2648–2666 | DOI | MR | Zbl
[2] Artstein-Avidan S., Milman V., “The concept of duality in convex analysis, and the characterization of the Legendre transform”, Ann. of Math. (2), 169:2 (2009), 661–674 | DOI | MR | Zbl
[3] Asplund E., “Averaged norms”, Israel J. Math., 5:4 (1967), 227–233 | DOI | MR | Zbl
[4] Bhatia R., Matrix analysis, Grad. Texts in Math., 169, Springer-Verlag, New York, 1997 | DOI | MR
[5] Böröczky K. J., Lutwak E., Deane Yang, Gaoyong Zhang, “The log-Brunn–Minkowski inequality”, Adv. Math., 231:4 (2012), 1974–1997 | DOI | MR | Zbl
[6] Böröczky K. J., Schneider R., “A characterization of the duality mapping for convex bodies”, Geom. Funct. Anal., 18:3 (2008), 657–667 | DOI | MR | Zbl
[7] Cordero-Erausquin D., Klartag B., “Interpolations, convexity and geometric inequalities”, Geometric aspects of functional analysis, Israel Seminar 2006–2010, Lecture Notes in Math., 2050, Springer, Berlin–Heidelberg, 2012, 151–168 | DOI | MR | Zbl
[8] Fedotov V. P., “Srednee geometricheskoe vypuklykh mnozhestv”, Zap. nauchn. semin. LOMI, 45, 1974, 113–116 | MR | Zbl
[9] Firey W. J., “$p$-means of convex bodies”, Math. Scand., 10 (1962), 17–24 | DOI | MR | Zbl
[10] Gruber P. M., “The endomorphisms of the lattice of norms in finite dimensions”, Abh. Math. Sem. Univ. Hamburg, 62:1 (1992), 179–189 | DOI | MR | Zbl
[11] Lawson J., Lim Y., “The geometric mean, matrices, metrics, and more”, Amer. Math. Monthly, 108:9 (2001), 797–812 | DOI | MR | Zbl
[12] Lutwak E., “The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem”, J. Differential Geom., 38:1 (1993), 131–150 | DOI | MR | Zbl
[13] Lutwak E., “The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas”, Adv. Math., 118:2 (1996), 244–294 | DOI | MR | Zbl
[14] Milman V., Rotem L., “Non-standard constructions in convex geometry; geometric means of convex bodies”, IMA Vol. Math. Appl. (to appear)
[15] Molchanov I., “Continued fractions built from convex sets and convex functions”, Comm. Contemp. Math., 17:5 (2015), 1550003 | DOI | MR | Zbl
[16] Newman D. J., “A simplified version of the fast algorithms of Brent and Salamin”, Math. Comp., 44:169 (1985), 207–210 | DOI | MR | Zbl
[17] Pusz W., Woronowicz S. L., “Functional calculus for sesquilinear forms and the purification map”, Rep. Mathematical Phys., 8:2 (1975), 159–170 | DOI | MR | Zbl
[18] Rotem L., Banach limit in convexity and geometric means for convex bodies, submitted | MR
[19] Rotem L., “Algebraically inspired results on convex functions and bodies”, Comm. Contemp. Math., 18:6 (2016), 1650027 | DOI | MR | Zbl
[20] Schneider R., Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 151, 2nd. ed., Cambridge Univ. Press, Cambridge, 2014 | MR | Zbl
[21] Semmes S., “Interpolation of Banach spaces, differential geometry and differential equations”, Rev. Mat. Iberoamericana, 4:1 (1988), 155–176 | DOI | MR | Zbl