Affine hemispheres of elliptic type
Algebra i analiz, Tome 29 (2017) no. 1, pp. 145-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find that for any $n$-dimensional, compact, convex set $K\subseteq\mathbb R^{n+1}$ there is an affinely-spherical hypersurface $M\subseteq\mathbb R^{n+1}$ with center in the relative interior of $K$ such that the disjoint union $M\cup K$ is the boundary of an $(n+1)$-dimensional, compact, convex set. This so-called affine hemisphere $M$ is uniquely determined by $K$ up to affine transformations, it is of elliptic type, is associated with $K$ in an affinely-invariant manner, and it is centered at the Santaló point of $K$.
Keywords: affine sphere, cone measure, anchor, Santaló point, obverse.
@article{AA_2017_29_1_a6,
     author = {B. Klartag},
     title = {Affine hemispheres of elliptic type},
     journal = {Algebra i analiz},
     pages = {145--188},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_1_a6/}
}
TY  - JOUR
AU  - B. Klartag
TI  - Affine hemispheres of elliptic type
JO  - Algebra i analiz
PY  - 2017
SP  - 145
EP  - 188
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_1_a6/
LA  - en
ID  - AA_2017_29_1_a6
ER  - 
%0 Journal Article
%A B. Klartag
%T Affine hemispheres of elliptic type
%J Algebra i analiz
%D 2017
%P 145-188
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_1_a6/
%G en
%F AA_2017_29_1_a6
B. Klartag. Affine hemispheres of elliptic type. Algebra i analiz, Tome 29 (2017) no. 1, pp. 145-188. http://geodesic.mathdoc.fr/item/AA_2017_29_1_a6/

[1] Alesker S., Dar S., Milman V., “A remarkable measure preserving diffeomorphism between two convex bodies in $\mathbb R^n$”, Geom. Dedicata, 74:2 (1999), 201–212 | DOI | MR | Zbl

[2] Artstein-Avidan S., Milman V., “Hidden structures in the class of convex functions and a new duality transform”, J. Eur. Math. Soc., 13:4 (2011), 975–1004 | DOI | MR | Zbl

[3] Berman R., Berndtsson B., “Real Monge–Ampère equations and Kähler–Ricci solitons on toric log Fano varieties”, Ann. Fac. Sci. Toulouse Math. (6), 22:4 (2013), 649–711 | DOI | MR | Zbl

[4] Blaschke W., Vorlesungen über Differentialgeometrie, v. II, Springer, Berlin, 1923 | MR | Zbl

[5] Borell C., “Convex set functions in $d$-space”, Period. Math. Hungar., 6:2 (1975), 111–136 | DOI | MR | Zbl

[6] Brascamp H. J., Lieb E. H., “On extensions of the Brunn–Minkowski and Prkopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR | Zbl

[7] Brenier Y., “Polar factorization and monotone rearrangement of vector-valued functions”, Comm. Pure Appl. Math., 44:4 (1991), 375–417 | DOI | MR | Zbl

[8] Caffarelli L., “The regularity of mappings with a convex potential”, J. Amer. Math. Soc., 5:1 (1992), 99–104 | DOI | MR | Zbl

[9] Calabi E., “Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens”, Michigan Math. J., 5 (1958), 105–126 | DOI | MR | Zbl

[10] Calabi E., “Complete affine hyperspheres. I”, Symposia Mathematica, Convegno di Geometria Differenziale (INDAM, Rome, 1971), v. X, Acad. Press, London, 1972, 19–38 | MR

[11] Cheng S. Y., Yau S.-T., “Complete affine hypersurfaces. I. The completeness of affine metrics”, Comm. Pure Appl. Math., 39:6 (1986), 839–866 | DOI | MR | Zbl

[12] Cordero-Erausquin D., Klartag B., “Moment measures”, J. Funct. Anal., 268:12 (2015), 3834–3866 | DOI | MR | Zbl

[13] Dubuc S., “Critères de convexité et inégalités intégrales”, Ann. Inst. Fourier (Grenoble), 27:1 (1977), 135–165 | DOI | MR | Zbl

[14] Ferrer L., Martínez A., Milán F., “Symmetry and uniqueness of parabolic affine spheres”, Math. Ann., 305:2 (1996), 311–327 | DOI | MR | Zbl

[15] Gale D., Klee V., Rockafellar R. T., “Convex functions on convex polytopes”, Proc. Amer. Math. Soc., 19 (1968), 867–873 | DOI | MR | Zbl

[16] Gangbo W., McCann R. J., “Optimal maps in Monge's mass transport problem”, C. R. Acad. Sci. Paris Sér. I Math., 321:12 (1995), 1653–1658 | MR | Zbl

[17] Gromov M., “Convex sets and Kähler manifolds”, Advances in Differential Geometry and Topology, World Sci. Publ., Teaneck, NJ, 1990, 1–38 | DOI | MR

[18] Loftin J., “Survey on affine spheres”, Handbook of geometric analysis, v. II, Adv. Lect. Math., 13, Int. Press, Somerville, MA, 2010, 161–191 | MR | Zbl

[19] Milán F., “The Cauchy problem for indefinite improper affine spheres and their Hessian equation”, Adv. Math., 251 (2014), 22–34 | DOI | MR | Zbl

[20] Nomizu K., Sasaki T., Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Math., 111, Cambridge Univ. Press, Cambridge, 1994 | MR

[21] Pogorelov A. V., “On the improper convex affine hyperspheres”, Geom. Dedicata, 1:1 (1972), 33–46 | DOI | MR | Zbl

[22] Schneider R., Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[23] Trudinger N. S., Wang X.-J., “Affine complete locally convex hypersurfaces”, Invent. Math., 150:1 (2002), 45–60 | DOI | MR | Zbl

[24] Tzitzéica G., “Sur une nouvelle classe de surfaces”, Rend. Circ. Mat. Palermo, 25:1 (1908), 180–187 | DOI | Zbl

[25] Tzitzéica G., “Sur une nouvelle classe de surfaces, $2^\text{\'eme}$ partie”, Rend. Circ. Mat. Palermo, 28:1 (1909), 210–216 | DOI | Zbl

[26] Rockafellar R. T., Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970 | MR

[27] Urbas J., “On the second boundary value problem for equations of Monge–Ampère type”, J. Reine Angew. Math., 487 (1997), 115–124 | MR | Zbl