On the stabilizers of finite sets of numbers in the R.~Thompson group~$F$
Algebra i analiz, Tome 29 (2017) no. 1, pp. 70-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The subgroups $H_U$ of the R. Thompson group $F$ that are stabilizers of finite sets $U$ of numbers in the interval $(0,1)$ are studied. The algebraic structure of $H_U$ is described and it is proved that the stabilizer $H_U$ is finitely generated if and only if $U$ consists of rational numbers. It is also shown that such subgroups are isomorphic surprisingly often. In particular, if finite sets $U\subset[0,1]$ and $V\subset[0,1]$ consist of rational numbers that are not finite binary fractions, and $|U|=|V|$, then the stabilizers of $U$ and $V$ are isomorphic. In fact these subgroups are conjugate inside a subgroup $\bar F\operatorname{Homeo}([0,1])$ that is the completion of $F$ with respect to what is called the Hamming metric on $F$. Moreover the conjugator can be found in a certain subgroup $\mathcal F\bar F$ which consists of possibly infinite tree-diagrams with finitely many infinite branches. It is also shown that the group $\mathcal F$ is non-amenable.
Keywords: Thompson group $F$, stabilizers.
@article{AA_2017_29_1_a4,
     author = {G. Golan and M. Sapir},
     title = {On the stabilizers of finite sets of numbers in the {R.~Thompson} group~$F$},
     journal = {Algebra i analiz},
     pages = {70--110},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_1_a4/}
}
TY  - JOUR
AU  - G. Golan
AU  - M. Sapir
TI  - On the stabilizers of finite sets of numbers in the R.~Thompson group~$F$
JO  - Algebra i analiz
PY  - 2017
SP  - 70
EP  - 110
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_1_a4/
LA  - en
ID  - AA_2017_29_1_a4
ER  - 
%0 Journal Article
%A G. Golan
%A M. Sapir
%T On the stabilizers of finite sets of numbers in the R.~Thompson group~$F$
%J Algebra i analiz
%D 2017
%P 70-110
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_1_a4/
%G en
%F AA_2017_29_1_a4
G. Golan; M. Sapir. On the stabilizers of finite sets of numbers in the R.~Thompson group~$F$. Algebra i analiz, Tome 29 (2017) no. 1, pp. 70-110. http://geodesic.mathdoc.fr/item/AA_2017_29_1_a4/

[1] Arhangel'skii A., Tkachenko M., Topological groups and related structures, Atlantis Stud. Math., 1, Atlantis Press, Paris; World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2008 | DOI | MR | Zbl

[2] Arzhantseva G. N., Guba V. S., Sapir M. V., “Metrics on diagram groups and uniform embeddings in a Hilbert space”, Comment. Math. Helv., 81:4 (2006), 911–929 | DOI | MR | Zbl

[3] Bieri R., Strebel R., On groups of $\mathrm{PL}$-homeomorphisms of the real line, arXiv: 1411.2868 | MR

[4] Bleak C., “A geometric classification of some solvable groups of homeomorphisms”, J. Lond. Math. Soc. (2), 78:2 (2008), 352–372 | DOI | MR | Zbl

[5] Bleak C., Wassink B., Finite index subgroups of R. Thompson's group $F$, arXiv: 0711.1014

[6] Brin M. G., “The chameleon groups of Richard J. Thompson: automorphisms and dynamics”, Inst. Hautes Études Sci. Publ. Math., 84 (1996), 5–33 | DOI | MR | Zbl

[7] Brin G. N., “Elementary amenable subgroups of R. Thompson's group $F$”, Internat. J. Algebra Comput., 15:4 (2005), 619–642 | DOI | MR | Zbl

[8] Burago D., Ivanov S., Polterovich L., “Conjugation-invariant norms on groups of geometric origin”, Groups of Diffeomorphisms, Adv. Stud. Pure Math., 52, Math. Soc. Japan, Tokyo, 2008, 221–250 | MR | Zbl

[9] Burillo J., “Quasi-isometrically embedded subgroups of Thompson's group $F$”, J. Algebra, 212:1 (1999), 65–78 | DOI | MR | Zbl

[10] Cannon J., Floyd W., Parry W., “Introductory notes on Richard Thompson's groups”, Enseig. Math. (2), 42:3–4 (1996), 215–256 | MR | Zbl

[11] Cleary S., Elder M., Rechnitzer A., Taback J., “Random subgroups of Thompson's group $F$”, Groups Geom. Dyn., 4:1 (2010), 91–126 | DOI | MR | Zbl

[12] The number of maximal subgroups up to isomorphism, Mathoverflow question, http://mathoverflow.net/q/238664

[13] Davis T. C., Olshanskii A. Yu., “Subgroup distortion in wreath products of cyclic groups”, J. Pure Appl. Algebra, 215:12 (2011), 2987–3004 | DOI | MR | Zbl

[14] Druţu C., Sapir M., “Non-linear residually finite groups”, J. Algebra, 284:1 (2005), 174–178 | DOI | MR | Zbl

[15] Giordano T., Pestov V., “Some extremely amenable groups related to operator algebras and ergodic theory”, J. Inst. Math. Jussieu, 6:2 (2007), 279–315 | DOI | MR | Zbl

[16] Golan G., The generation problem in Thompson group $F$, arXiv: 1608.02572

[17] Golan G., Sapir M., “On Jones' subgroup of R. Thompson group $F$”, J. Algebra, 470 (2017), 122–159 | DOI | MR | Zbl

[18] Golan G., Sapir M., On subgroups of R. Thompson's group $F$, 2015, arXiv: ; Trans. AMS, 2016, accepted 1508.00493

[19] Guba V., Sapir M., “Diagram groups”, Memoirs Amer. Math. Soc., 130:620 (1997), 1–117 | DOI | MR

[20] Guba V. S., Sapir M. V., “O podgruppakh R. Tomsona $F$ i drugikh grupp diagramm”, Mat. sb., 190:8 (1999), 3–60 | DOI | MR | Zbl

[21] Jones V., Some unitary representations of Thompson's groups $F$ and $T$, arXiv: 1412.7740 | MR

[22] Moore J. T., Nonassociative Ramsey theory and the amenability of Thompson's group, arXiv: 1209.2063

[23] Sapir M., Combinatorial algebra: syntax and semantics, Springer Monogr. Math., Springer, Cham, 2014 | DOI | MR | Zbl

[24] Savchuk D., “Some graphs related to Thompson's group $F$”, Combinatorial and Geometric Group Theory, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2010, 279–296 | MR | Zbl

[25] Savchuk D., “Schreier graphs of actions of Thompson's group $F$ on the unit interval and on the Cantor set”, Geom. Dedicata, 175 (2015), 355–372 | DOI | MR | Zbl

[26] Shavgulidze E. T., “The Thompson group $F$ is amenable”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12:2 (2009), 173–191 | DOI | MR | Zbl

[27] Wajnryb B., Witowicz P., Richard Thompson group $F$ is not amenable, arXiv: 1408.2188

[28] Wu Yan, Chen Xiaoman, “Distortion of wreath products in Thompson's group $F$”, Chin. Ann. Math. Ser. B, 35:5 (2014), 801–816 | DOI | MR | Zbl