Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_1_a4, author = {G. Golan and M. Sapir}, title = {On the stabilizers of finite sets of numbers in the {R.~Thompson} group~$F$}, journal = {Algebra i analiz}, pages = {70--110}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_1_a4/} }
G. Golan; M. Sapir. On the stabilizers of finite sets of numbers in the R.~Thompson group~$F$. Algebra i analiz, Tome 29 (2017) no. 1, pp. 70-110. http://geodesic.mathdoc.fr/item/AA_2017_29_1_a4/
[1] Arhangel'skii A., Tkachenko M., Topological groups and related structures, Atlantis Stud. Math., 1, Atlantis Press, Paris; World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2008 | DOI | MR | Zbl
[2] Arzhantseva G. N., Guba V. S., Sapir M. V., “Metrics on diagram groups and uniform embeddings in a Hilbert space”, Comment. Math. Helv., 81:4 (2006), 911–929 | DOI | MR | Zbl
[3] Bieri R., Strebel R., On groups of $\mathrm{PL}$-homeomorphisms of the real line, arXiv: 1411.2868 | MR
[4] Bleak C., “A geometric classification of some solvable groups of homeomorphisms”, J. Lond. Math. Soc. (2), 78:2 (2008), 352–372 | DOI | MR | Zbl
[5] Bleak C., Wassink B., Finite index subgroups of R. Thompson's group $F$, arXiv: 0711.1014
[6] Brin M. G., “The chameleon groups of Richard J. Thompson: automorphisms and dynamics”, Inst. Hautes Études Sci. Publ. Math., 84 (1996), 5–33 | DOI | MR | Zbl
[7] Brin G. N., “Elementary amenable subgroups of R. Thompson's group $F$”, Internat. J. Algebra Comput., 15:4 (2005), 619–642 | DOI | MR | Zbl
[8] Burago D., Ivanov S., Polterovich L., “Conjugation-invariant norms on groups of geometric origin”, Groups of Diffeomorphisms, Adv. Stud. Pure Math., 52, Math. Soc. Japan, Tokyo, 2008, 221–250 | MR | Zbl
[9] Burillo J., “Quasi-isometrically embedded subgroups of Thompson's group $F$”, J. Algebra, 212:1 (1999), 65–78 | DOI | MR | Zbl
[10] Cannon J., Floyd W., Parry W., “Introductory notes on Richard Thompson's groups”, Enseig. Math. (2), 42:3–4 (1996), 215–256 | MR | Zbl
[11] Cleary S., Elder M., Rechnitzer A., Taback J., “Random subgroups of Thompson's group $F$”, Groups Geom. Dyn., 4:1 (2010), 91–126 | DOI | MR | Zbl
[12] The number of maximal subgroups up to isomorphism, Mathoverflow question, http://mathoverflow.net/q/238664
[13] Davis T. C., Olshanskii A. Yu., “Subgroup distortion in wreath products of cyclic groups”, J. Pure Appl. Algebra, 215:12 (2011), 2987–3004 | DOI | MR | Zbl
[14] Druţu C., Sapir M., “Non-linear residually finite groups”, J. Algebra, 284:1 (2005), 174–178 | DOI | MR | Zbl
[15] Giordano T., Pestov V., “Some extremely amenable groups related to operator algebras and ergodic theory”, J. Inst. Math. Jussieu, 6:2 (2007), 279–315 | DOI | MR | Zbl
[16] Golan G., The generation problem in Thompson group $F$, arXiv: 1608.02572
[17] Golan G., Sapir M., “On Jones' subgroup of R. Thompson group $F$”, J. Algebra, 470 (2017), 122–159 | DOI | MR | Zbl
[18] Golan G., Sapir M., On subgroups of R. Thompson's group $F$, 2015, arXiv: ; Trans. AMS, 2016, accepted 1508.00493
[19] Guba V., Sapir M., “Diagram groups”, Memoirs Amer. Math. Soc., 130:620 (1997), 1–117 | DOI | MR
[20] Guba V. S., Sapir M. V., “O podgruppakh R. Tomsona $F$ i drugikh grupp diagramm”, Mat. sb., 190:8 (1999), 3–60 | DOI | MR | Zbl
[21] Jones V., Some unitary representations of Thompson's groups $F$ and $T$, arXiv: 1412.7740 | MR
[22] Moore J. T., Nonassociative Ramsey theory and the amenability of Thompson's group, arXiv: 1209.2063
[23] Sapir M., Combinatorial algebra: syntax and semantics, Springer Monogr. Math., Springer, Cham, 2014 | DOI | MR | Zbl
[24] Savchuk D., “Some graphs related to Thompson's group $F$”, Combinatorial and Geometric Group Theory, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2010, 279–296 | MR | Zbl
[25] Savchuk D., “Schreier graphs of actions of Thompson's group $F$ on the unit interval and on the Cantor set”, Geom. Dedicata, 175 (2015), 355–372 | DOI | MR | Zbl
[26] Shavgulidze E. T., “The Thompson group $F$ is amenable”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12:2 (2009), 173–191 | DOI | MR | Zbl
[27] Wajnryb B., Witowicz P., Richard Thompson group $F$ is not amenable, arXiv: 1408.2188
[28] Wu Yan, Chen Xiaoman, “Distortion of wreath products in Thompson's group $F$”, Chin. Ann. Math. Ser. B, 35:5 (2014), 801–816 | DOI | MR | Zbl