Combinatorial identities for polyhedral cones
Algebra i analiz, Tome 29 (2017) no. 1, pp. 279-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some known relations for convex polyhedral cones, involving angles or conical intrinsic volumes, are superficially of a metric character, but have indeed a purely combinatorial core. This fact is strengthened in some cases, with implications for valuations on polyhedral cones, and is worked out in the case of the extended Klivans–Swartz formula.
Keywords: polyhedral cone, angle sum relation, characteristic function, valuation, conical intrinsic volume, spherical Gauss–Bonnet relation, Klivans–Swartz formula.
@article{AA_2017_29_1_a11,
     author = {R. Schneider},
     title = {Combinatorial identities for polyhedral cones},
     journal = {Algebra i analiz},
     pages = {279--295},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_1_a11/}
}
TY  - JOUR
AU  - R. Schneider
TI  - Combinatorial identities for polyhedral cones
JO  - Algebra i analiz
PY  - 2017
SP  - 279
EP  - 295
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_1_a11/
LA  - en
ID  - AA_2017_29_1_a11
ER  - 
%0 Journal Article
%A R. Schneider
%T Combinatorial identities for polyhedral cones
%J Algebra i analiz
%D 2017
%P 279-295
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_1_a11/
%G en
%F AA_2017_29_1_a11
R. Schneider. Combinatorial identities for polyhedral cones. Algebra i analiz, Tome 29 (2017) no. 1, pp. 279-295. http://geodesic.mathdoc.fr/item/AA_2017_29_1_a11/

[1] Amelunxen D., Lotz M., Intrinsic volumes of polyhedral cones: a combinatorial perspective, Preprint, 2016, arXiv: 1512.06033v2

[2] Chen B., “The Gram–Sommerville and Gauss–Bonnet theorems and combinatorial geometric measures for noncompact polyhedra”, Adv. Math., 91:2 (1992), 269–291 | DOI | MR | Zbl

[3] Groemer H., “On the extension of additive functionals on classes of convex sets”, Pacific J. Math., 75:2 (1978), 397–410 | DOI | MR | Zbl

[4] Grünbaum B., “Grassmann angles of convex polytopes”, Acta Math., 121 (1968), 293–302 | DOI | MR | Zbl

[5] Grünbaum B., Convex polytopes, Grad. Texts in Math., 221, 2nd ed., Springer-Verlag, New York, 2003 | DOI | MR | Zbl

[6] Hadwiger H., “Eulers Charakteristik und kombinatorische Geometrie”, J. Reine Angew. Math., 194 (1955), 101–110 | MR | Zbl

[7] Hug D., Schneider R., “Random conical tessellations”, Discrete Comput. Geom., 56 (2016), 395–426 | DOI | MR | Zbl

[8] Kabluchko Z., Vysotsky V., Zaporozhets D., Convex hulls of random walks, hyperplane arrangements, and Weyl chambers, Preprint, 2015, arXiv: 1510.04073

[9] Kabluchko Z., Last G., Zaporozhets D., Inclusion-exclusion principles for convex hulls and the Euler relation, Preprint, 2016, arXiv: 1603.01357

[10] Klivans C. E., Swartz E., “Projection volumes of hyperplane arrangements”, Discrete Comput. Geom., 46:3 (2011), 417–426 | DOI | MR | Zbl

[11] Lenz H., “Mengenalgebra und Eulersche Charakteristik”, Abh. Math. Sem. Univ. Hamburg, 34 (1970), 135–147 | DOI | MR | Zbl

[12] McMullen P., “Non-linear angle sum relations for polyhedral cones and polytopes”, Math. Proc. Cambridge Phil. Soc., 78:2 (1975), 247–261 | DOI | MR | Zbl

[13] McMullen P., “Angle-sum relations for polyhedral sets”, Mathematika, 33:2 (1986), 173–188 | DOI | MR | Zbl

[14] McMullen P., “Valuations and dissections”, Handbook of convex geometry, v. B, North-Holland, Amsterdam, 1993, 933–988 | DOI | MR | Zbl

[15] Santaló L. A., Integral geometry and geometric probability, Encyclopedia Math. Appl., 1, Addison-Wesley Publ., Reading, Mass., 1976 | MR | Zbl

[16] Schneider R., Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 151, 2nd ed., Cambridge Univ. Press, Cambridge, 2014 | MR | Zbl

[17] Schneider R., Weil W., Stochastic and integral geometry. Probability and its applications, Springer-Verlag, Berlin, 2008 | MR

[18] Shephard G. C., “An elementary proof of Gram's theorem for polytopes”, Canad. J. Math., 19 (1967), 1214–1217 | DOI | MR | Zbl

[19] Stanley R. P., “An introduction to hyperplane arrangements”, Geometric Combinatorics, IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007, 389–496 | DOI | MR | Zbl

[20] Stanley R. P., Enumerative combinatorics, v. 1, Cambridge Stud. Adv. Math., 49, 2nd ed., Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl

[21] Zaslavsky T., Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc., 1, no. 154, 1975 | MR