Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_6_a4, author = {D. V. Rutsky}, title = {Vector-valued boundedness of harmonic analysis operators}, journal = {Algebra i analiz}, pages = {91--117}, publisher = {mathdoc}, volume = {28}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_6_a4/} }
D. V. Rutsky. Vector-valued boundedness of harmonic analysis operators. Algebra i analiz, Tome 28 (2016) no. 6, pp. 91-117. http://geodesic.mathdoc.fr/item/AA_2016_28_6_a4/
[1] Blasco O., Xu Quan Hua, “Interpolation between vector-valued Hardy spaces”, J. Funct. Anal., 102:2 (1991), 331–359 | DOI | MR | Zbl
[2] Cruz-Uribe D., Martell J. M., Pérez C., Weights, extrapolation and the theory of Rubio de Francia, Oper. Theory Adv. Appl., 215, Birkhäuser/Springer Basel AG, Basel, 2011 | MR | Zbl
[3] Fan Ky, “Fixed-point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121–126 | DOI | MR | Zbl
[4] García-Cuerva J., Macías R., Torrea J. L., “The Hardy–Littlewood property of Banach lattices”, Israel J. Math., 83:1–2 (1993), 177–201 | MR | Zbl
[5] Kalton N. J., “Complex interpolation of Hardy-type subspaces”, Math. Nachr., 171 (1995), 227–258 | DOI | MR | Zbl
[6] Kisliakov S. V., Xu Quanhua, “Interpolation of weighted and vector-valued Hardy spaces”, Trans. Amer. Math. Soc., 343:1 (1994), 1–34 | DOI | MR | Zbl
[7] Kislyakov S. V., “On BMO-regular couples of lattices of measurable functions”, Studia Math., 159:2 (2003), 277–289 | DOI | MR
[8] Lerner A. K., “Weighted norm inequalities for the local sharp maximal function”, J. Fourier Anal. Appl., 10:5 (2004), 465–474 | DOI | MR | Zbl
[9] Macías R. A., Segovia C., “Lipschitz functions on spaces of homogeneous type”, Adv. in Math., 33:3 (1979), 257–270 | DOI | MR | Zbl
[10] Muckenhoupt B., Wheeden R. L., “Weighted norm inequalities for fractional integrals”, Trans. Amer. Math. Soc., 192 (1974), 261–274 | DOI | MR | Zbl
[11] Rutsky D. V., “$\mathrm A_1$-regularity and boundedness of Calderón–Zygmund operators”, Studia Math., 221:3 (2014), 231–247 | DOI | MR | Zbl
[12] Rutsky D. V., $\mathrm A_1$-regularity and boundedness of Calderón–Zygmund operators. II, Preprint, 2015, arXiv: 1505.00518
[13] Rolewicz S., Metric linear spaces, Math. Appl. (East Europ. Ser.), 20, D. Reidel Publ. Co., Dordrecht, 1985 | MR | Zbl
[14] Schep A. R., “Products and factors of Banach function spaces”, Positivity, 14:2 (2010), 301–319 | DOI | MR | Zbl
[15] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, 1993 | MR | Zbl
[16] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, BKhV-Peterburg, Spb., 2004
[17] Kislyakov S. V., “Teorema o korone i interpolyatsiya”, Algebra i analiz, 27:5 (2015), 69–80 | MR
[18] Lozanovskii G. Ya., “O nekotorykh banakhovykh strukturakh”, Sib. mat. zh., 10 (1969), 584–599 | MR
[19] Rutskii D. V., “BMO-regulyarnost v reshetkakh izmerimykh funktsii na prostranstvakh odnorodnogo tipa”, Algebra i analiz, 23:2 (2011), 248–295 | MR | Zbl
[20] Rutskii D. V., “Zamechaniya ob $\mathrm A_p$-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 27:5 (2015), 153–169 | MR
[21] Rutskii D. V., “$\mathrm A_1$-regulyarnost i ogranichennost preobrazovanii Rissa v banakhovykh reshetkakh izmerimykh funktsii”, Zap. nauch. semin. POMI, 447, 2016, 113–122 | MR