Vector-valued boundedness of harmonic analysis operators
Algebra i analiz, Tome 28 (2016) no. 6, pp. 91-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a space of homogeneous type, $X$ a Banach lattice of measurable functions on $S \times \Omega$ with the Fatou property and nontrivial convexity, and $Y$ some Banach lattice of measurable functions with the Fatou property. Under the assumption that the Hardy–Littlewood maximal operator $M$ is bounded both in $X$ and $X’$, it is proved that the boundedness of $M$ in $X (Y)$ is equivalent to its boundedness in $\mathrm L_{s}(Y)$ for some (equivalently, for all) $1 s \infty$. With $S = \mathbb R^n$, the last condition is known as the Hardy–Littlewood property of $Y$ and is related to the $\mathrm {UMD}$ property. For lattices $X$ with nontrivial convexity and concavity, the UMD property implies the boundedness of all Calderón–Zygmund operators in $X (Y)$ and is equivalent to the boundedness of a single nondegenerate Calderón–Zygmund operator. The $\mathrm {UMD}$ property of $Y$ is characterized in terms of the $\mathrm A_{p}$-regularity of both $\mathrm L_{\infty } (Y)$ and $\mathrm L_{\infty } (Y’)$. The arguments are based on an improved version of the divisibility property for $\mathrm A_{p}$-regularity.
Keywords: $A_p$-regularity, BMO-regularity, Hardy-Littlewood maximal operator, Calderón–Zygmund operators.
@article{AA_2016_28_6_a4,
     author = {D. V. Rutsky},
     title = {Vector-valued boundedness of harmonic analysis operators},
     journal = {Algebra i analiz},
     pages = {91--117},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_6_a4/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - Vector-valued boundedness of harmonic analysis operators
JO  - Algebra i analiz
PY  - 2016
SP  - 91
EP  - 117
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_6_a4/
LA  - ru
ID  - AA_2016_28_6_a4
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T Vector-valued boundedness of harmonic analysis operators
%J Algebra i analiz
%D 2016
%P 91-117
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_6_a4/
%G ru
%F AA_2016_28_6_a4
D. V. Rutsky. Vector-valued boundedness of harmonic analysis operators. Algebra i analiz, Tome 28 (2016) no. 6, pp. 91-117. http://geodesic.mathdoc.fr/item/AA_2016_28_6_a4/

[1] Blasco O., Xu Quan Hua, “Interpolation between vector-valued Hardy spaces”, J. Funct. Anal., 102:2 (1991), 331–359 | DOI | MR | Zbl

[2] Cruz-Uribe D., Martell J. M., Pérez C., Weights, extrapolation and the theory of Rubio de Francia, Oper. Theory Adv. Appl., 215, Birkhäuser/Springer Basel AG, Basel, 2011 | MR | Zbl

[3] Fan Ky, “Fixed-point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121–126 | DOI | MR | Zbl

[4] García-Cuerva J., Macías R., Torrea J. L., “The Hardy–Littlewood property of Banach lattices”, Israel J. Math., 83:1–2 (1993), 177–201 | MR | Zbl

[5] Kalton N. J., “Complex interpolation of Hardy-type subspaces”, Math. Nachr., 171 (1995), 227–258 | DOI | MR | Zbl

[6] Kisliakov S. V., Xu Quanhua, “Interpolation of weighted and vector-valued Hardy spaces”, Trans. Amer. Math. Soc., 343:1 (1994), 1–34 | DOI | MR | Zbl

[7] Kislyakov S. V., “On BMO-regular couples of lattices of measurable functions”, Studia Math., 159:2 (2003), 277–289 | DOI | MR

[8] Lerner A. K., “Weighted norm inequalities for the local sharp maximal function”, J. Fourier Anal. Appl., 10:5 (2004), 465–474 | DOI | MR | Zbl

[9] Macías R. A., Segovia C., “Lipschitz functions on spaces of homogeneous type”, Adv. in Math., 33:3 (1979), 257–270 | DOI | MR | Zbl

[10] Muckenhoupt B., Wheeden R. L., “Weighted norm inequalities for fractional integrals”, Trans. Amer. Math. Soc., 192 (1974), 261–274 | DOI | MR | Zbl

[11] Rutsky D. V., “$\mathrm A_1$-regularity and boundedness of Calderón–Zygmund operators”, Studia Math., 221:3 (2014), 231–247 | DOI | MR | Zbl

[12] Rutsky D. V., $\mathrm A_1$-regularity and boundedness of Calderón–Zygmund operators. II, Preprint, 2015, arXiv: 1505.00518

[13] Rolewicz S., Metric linear spaces, Math. Appl. (East Europ. Ser.), 20, D. Reidel Publ. Co., Dordrecht, 1985 | MR | Zbl

[14] Schep A. R., “Products and factors of Banach function spaces”, Positivity, 14:2 (2010), 301–319 | DOI | MR | Zbl

[15] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[16] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, BKhV-Peterburg, Spb., 2004

[17] Kislyakov S. V., “Teorema o korone i interpolyatsiya”, Algebra i analiz, 27:5 (2015), 69–80 | MR

[18] Lozanovskii G. Ya., “O nekotorykh banakhovykh strukturakh”, Sib. mat. zh., 10 (1969), 584–599 | MR

[19] Rutskii D. V., “BMO-regulyarnost v reshetkakh izmerimykh funktsii na prostranstvakh odnorodnogo tipa”, Algebra i analiz, 23:2 (2011), 248–295 | MR | Zbl

[20] Rutskii D. V., “Zamechaniya ob $\mathrm A_p$-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 27:5 (2015), 153–169 | MR

[21] Rutskii D. V., “$\mathrm A_1$-regulyarnost i ogranichennost preobrazovanii Rissa v banakhovykh reshetkakh izmerimykh funktsii”, Zap. nauch. semin. POMI, 447, 2016, 113–122 | MR