Numerically detectable hidden spectrum of certain integration operators
Algebra i analiz, Tome 28 (2016) no. 6, pp. 70-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the critical constant for effective inversions in operator algebras $alg(V)$ generated by the Volterra integration $Jf=\int_0^xf\,dt$ in the spaces $L^1(0,1)$ and $L^2(0,1)$ are different: respectively, $\delta_1=1/2$ (i.e., the effective inversion is possible only for polynomials $T=p(J)$ with a small condition number $r(T^{-1})\|T\|2$, $r(\cdot)$ being the spectral radius), and $\delta_1=1$ (no norm control of inverses). For more general integration operator $J_\mu f=\int_{[0,x>}f\,d\mu$ on the space $L^2([0,1],\mu)$ with respect to an arbitrary finite measure $\mu$, the following $0-1$ law holds: either $\delta_1=0$ (and this happens if and only if $\mu$ is a purely discrete measure whose set of point masses $\mu(\{x\})$ is a finite union of geometrically decreasing sequences), or $\delta_1=1$.
Keywords: effective inversion, visible spectrum, integration operator.
@article{AA_2016_28_6_a2,
     author = {N. Nikolski},
     title = {Numerically detectable hidden spectrum of certain integration operators},
     journal = {Algebra i analiz},
     pages = {70--83},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_6_a2/}
}
TY  - JOUR
AU  - N. Nikolski
TI  - Numerically detectable hidden spectrum of certain integration operators
JO  - Algebra i analiz
PY  - 2016
SP  - 70
EP  - 83
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_6_a2/
LA  - en
ID  - AA_2016_28_6_a2
ER  - 
%0 Journal Article
%A N. Nikolski
%T Numerically detectable hidden spectrum of certain integration operators
%J Algebra i analiz
%D 2016
%P 70-83
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_6_a2/
%G en
%F AA_2016_28_6_a2
N. Nikolski. Numerically detectable hidden spectrum of certain integration operators. Algebra i analiz, Tome 28 (2016) no. 6, pp. 70-83. http://geodesic.mathdoc.fr/item/AA_2016_28_6_a2/

[1] Aleman A., Dahlner A., “Uniform spectral radius and compact Gelfand transform”, Studia Math., 172:1 (2006), 25–46 | DOI | MR | Zbl

[2] Björk J.-E., “On the spectral radius formula in Banach algebras”, Pacific J. Math., 40 (1972), 279–284 | DOI | MR | Zbl

[3] El-Falla O., Nikolskii N. K., Zarrabi M., “Otsenki rezolvent v algebrakh Bërlinga–Soboleva”, Algebra i analiz, 10:6 (1998), 1–92 ; St. Petersburg Math. J., 10:6 (1999), 901–964 | MR | Zbl

[4] Garnett J. B., Bounded analytic functions, Pure Appl. Math., 96, Acad. Press, New York, 1981 | MR | Zbl

[5] Gorkin P., Mortini R., Nikolski N., “Norm controlled inversions and a corona theorem for $H^\infty$-quotient algebras”, J. Funct. Anal., 255:4 (2008), 854–876 | DOI | MR | Zbl

[6] Lyubich Yu., “The power boundedness and resolvent conditions for functions of the classical Volterra operator”, Studia Math., 196:1 (2010), 41–63 | DOI | MR | Zbl

[7] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980; Nikolski N., Treatise on the shift operator, Springer-Verlag, Heidelberg–NY, 1986 | Zbl

[8] Nikolski N., “In search for the invisible spectrum”, Ann. Inst. Fourier (Grenoble), 49:6 (1999), 1001–1074 | DOI | MR

[9] Nikolski N., “The problem of efficient inversions and Bezout equations”, Twentieth Century Harmonic Analysis a Celebration, NATO Science Series. II. Mathematics, 33, Kluwer, 2001, 235–269 | MR | Zbl

[10] Nikolski N., Operators, functions, and systems, v. 1–2, Math. Surveys Monogr., 92–93, Amer. Math. Soc., Providence, 2002 | MR | Zbl

[11] Nikolski N., “The spectral localization property for diagonal operators and semigroups”, Algebra i analiz, 21:6 (2009), 202–226 | MR | Zbl

[12] Nikolski N., Éléments d'analyse avancé, v. 1, Espaces de Hardy Belin, Paris, 2012

[13] Nikolski N., Vasyunin V., “Elements of spectral theory in terms of the free function model. I. Basic constructions”, Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 211–302 | MR | Zbl

[14] Nikolskii N. K., Vasyunin V. I., “Porog obratimosti dlya algebry $H^\infty$-sledov i effektivnoe obraschenie matrits”, Algebra i analiz, 23:1 (2011), 87–110 | MR | Zbl

[15] Olofsson A., “An extremal problem in Banach algebras”, Studia Math., 145:3 (2001), 255–264 | DOI | MR | Zbl

[16] Wiener N., Pitt R., “On absolutely convergent Fourier–Stieltjes transforms”, Duke Math. J., 4 (1938), 420–436 | DOI | MR | Zbl