Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_6_a1, author = {V. E. Ismailov}, title = {Approximation by sums of ridge functions with fixed directions}, journal = {Algebra i analiz}, pages = {20--69}, publisher = {mathdoc}, volume = {28}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_6_a1/} }
V. E. Ismailov. Approximation by sums of ridge functions with fixed directions. Algebra i analiz, Tome 28 (2016) no. 6, pp. 20-69. http://geodesic.mathdoc.fr/item/AA_2016_28_6_a1/
[1] Arnold V. I., “O predstavlenii nepreryvnykh funktsii trekh peremennykh superpozitsiyami nepreryvnykh funktsii dvukh peremennykh”, Mat. sb., 48(90):1 (1959), 3–74 | MR | Zbl
[2] Babaev M.-B. A., “O priblizhenii mnogochlenov dvukh peremennykh summami funktsii odnoi peremennoi”, Dokl. AN SSSR, 193:5 (1970), 967–969 | Zbl
[3] Babaev M.-B. A., “O tochnykh otsenkakh priblizheniya funktsii mnogikh peremennykh summami funktsii menshego chisla peremennykh”, Mat. zametki, 12:1 (1972), 105–114 | MR | Zbl
[4] Braess D., Pinkus A., “Interpolation by ridge functions”, J. Approx. Theory, 73:2 (1993), 218–236 | DOI | MR | Zbl
[5] Buck R. C., “On approximation theory and functional equations”, J. Approx. Theory, 5 (1972), 228–237 | DOI | MR | Zbl
[6] Buhmann M. D., Pinkus A., “Identifying linear combinations of ridge functions”, Adv. in App. Math., 22:1 (1999), 103–118 | DOI | MR | Zbl
[7] Candes E. J., “Ridgelets: estimating with ridge functions”, Ann. Statist., 31:5 (2003), 1561–1599 | DOI | MR | Zbl
[8] Candes E. J., Ridgelets: theory and applications, Ph. D. Thesis, Depart. Statist., Stanford Univ., Stanford, 1998 | MR
[9] Chen T., Chen H., “Approximation of continuous functionals by neural networks with application to dynamic systems”, IEEE Trans. Neural Networks, 4 (1993), 910–918 | DOI
[10] Cheney E. W., Light W. A., Approximation theory in tensor product spaces, Lecture Notes in Math., 1169, Springer-Verlag, Berlin, 1985 | MR | Zbl
[11] Chui C. K., Li X., “Approximation by ridge functions and neural networks with one hidden layer”, J. Approx. Theory, 70:2 (1992), 131–141 | DOI | MR | Zbl
[12] Cowsik R. C., Klopotowski A., Nadkarni M. G., “When is $f(x,y)=u(x)+v(y)$?”, Proc. Indian Acad. Sci. Math. Sci., 109:1 (1999), 57–64 | DOI | MR | Zbl
[13] Cybenko G., “Approximation by superpositions of a sigmoidal function”, Math. Control Signals, Systems, 2:4 (1989), 303–314 | DOI | MR | Zbl
[14] Demko S., “A superposition theorem for bounded continuous functions”, Proc. Amer. Math. Soc., 66:1 (1977), 75–78 | DOI | MR | Zbl
[15] DeVore R. A., Oskolkov K. I., Petrushev P. P., “Approximation by feedforward neural networks”, Ann. Numer. Math., 4:1 (1997), 261–287 | MR | Zbl
[16] Diaconis P., Shahshahani M., “On nonlinear functions of linear combinations”, SIAM J. Sci. Statist. Comput., 5:1 (1984), 175–191 | DOI | MR | Zbl
[17] Diliberto S. P., Straus E. G., “On the approximation of a function of several variables by the sum of functions of fewer variables”, Pacific J. Math., 1 (1951), 195–210 | DOI | MR | Zbl
[18] Donoho D. L., Johnstone I. M., “Projection-based approximation and a duality method with kernel methods”, Ann. Statist., 17:1 (1989), 58–106 | DOI | MR | Zbl
[19] Dyn N., Light W. A., Cheney E. W., “Interpolation by piecewise-linear radial basis functions”, J. Approx. Theory, 59:2 (1989), 202–223 | DOI | MR | Zbl
[20] Fridman B. L., “Uluchshenie gladkosti funktsii v teoreme A. N. Kolmogorova o superpozitsiyakh”, Dokl. AN SSSR, 177:5 (1967), 1019–1022 | Zbl
[21] Friedman J. H., Tukey J. W., “A projection pursuit algorithm for exploratory data analysis”, IEEE Trans. Comput., 23 (1974), 881–890 | DOI | Zbl
[22] Friedman J. H., Stuetzle W., “Projection pursuit regression”, J. Amer. Statist. Assoc., 76:376 (1981), 817–823 | DOI | MR
[23] Garkavi A. L., Medvedev V. A., Khavinson S. Ya., “O suschestvovanii nailuchshego ravnomernogo priblizheniya funktsii dvukh peremennykh summami $\varphi(x)+\psi(y)$”, Sib. mat. zh., 36:4 (1995), 819–827 | MR | Zbl
[24] von Golitschek M., Light W. A., “Approximation by solutions of the planar wave equation”, SIAM J. Numer. Anal., 29:3 (1992), 816–830 | DOI | MR
[25] Golomb M., “Approximation by functions of fewer variables. On numerical approximation”, Proc. Symp. (Madison, 1958), Univ. Wisconsin Press, Madison, 1959, 275–327 | MR
[26] Gripenberg G., “Approximation by neural networks with a bounded number of nodes at each level”, J. Approx. Theory, 122:2 (2003), 260–266 | DOI | MR | Zbl
[27] Hornik K., “Approximation capabilities of multilayer feedforward networks”, Neural Networks, 4 (1991), 251–257 | DOI
[28] Huber P. J., “Projection pursuit”, Ann. Statist., 13:2 (1985), 435–475 | DOI | MR
[29] Ismailov V. E., “Approximation by neural networks with weights varying on a finite set of directions”, J. Anal. Appl., 389:1 (2012), 72–83 | DOI | MR | Zbl
[30] Ismailov V. E., “A note on the representation of continuous functions by linear superpositions”, Expo. Math., 30:1 (2012), 96–101 | DOI | MR | Zbl
[31] Ismailov V. E., “On the theorem of M. Golomb”, Proc. Indian Acad. Sci. Math. Sci., 119:1 (2009), 45–52 | DOI | MR | Zbl
[32] Ismailov V. E., “On the representation by linear superpositions”, J. Approx. Theory, 151:2 (2008), 113–125 | DOI | MR | Zbl
[33] Ismailov V. E., “A note on the best $L_2$ approximation by ridge functions”, Appl. Math. E-Notes, 7 (2007), 71–76, (electronic) | MR | Zbl
[34] Ismailov V. E., “Characterization of an extremal sum of ridge functions”, J. Comput. Appl. Math., 205:1 (2007), 105–115 | DOI | MR | Zbl
[35] Ismailov V. E., “On error formulas for approximation by sums of univariate functions”, Int. J. Math. Math. Sci., 2006 (2006), Article ID 65620 | DOI | MR | Zbl
[36] Ismailov V. E., “O metodakh vychisleniya tochnogo znacheniya nailuchshego priblizheniya summami funktsii odnoi peremennoi”, Sib. mat. zh., 47:5 (2006), 1076–1082 | MR | Zbl
[37] Ito Y., “Nonlinearity creates linear independence”, Adv. Comput. Math., 5:2–3 (1996), 189–203 | DOI | MR | Zbl
[38] Ito Y., “Approximation of functions on a compact set by finite sums of a sigmoid function without scaling”, Neural Networks, 4:6 (1991), 817–826 | DOI
[39] Ito Y., “Approximation of continuous functions on $\mathbb R^d$ by linear combinations of shifted rotations of a sigmoid function with and without scaling”, Neural Networks, 5 (1992), 105–115 | DOI
[40] John F., Plane waves and spherical means applied to partial differential equations, Intersci. Publ., New York, 1955 | MR | Zbl
[41] Kazantsev I., “Tomographic reconstruction from arbitrary directions using ridge functions”, Inverse Problems, 14:3 (1998), 635–645 | DOI | MR | Zbl
[42] Kazantsev I., Lemahieu I., “Reconstruction of elongated structures using ridge functions and natural pixels”, Inverse Problems, 16:6 (2000), 505–517 | DOI | MR | Zbl
[43] Khavinson S. Ya., Best approximation by linear superpositions (approximate nomography), Transl. Math. Monogr., 159, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[44] Khavinson S. Ya., “Chebyshevskaya teorema dlya priblizheniya funktsii dvukh peremennykh summami $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. mat., 33:3 (1969), 650–666 | MR | Zbl
[45] Klopotowski A., Nadkarni M. G., Bhaskara Rao K. P. S., “When is $f(x_1,x_2,\dots,x_n)=u_1(x_1)+u_2(x_2)+\dots+u_n(x_n)$?”, Proc. Indian Acad. Sci. Math. Sci., 113:1 (2003), 77–86 | DOI | MR | Zbl
[46] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnoi peremennoi i slozheniya”, Dokl. AN SSSR, 114:5 (1957), 953–956 | MR | Zbl
[47] Leshno M., Lin V. Ya., Pinkus A., Schocken S., “Multilayer feedforward networks with a non-polynomial activation function can approximate any function”, Neural Networks, 6 (1993), 861–867 | DOI
[48] Li X., “Interpolation by ridge polynomials and its application in neural networks”, J. Comput. Appl. Math., 144:1–2 (2002), 197–209 | MR | Zbl
[49] Light W. A., Cheney E. W., “On the approximation of a bivariate function by the sum of univariate functions”, J. Approx. Theory, 29:4 (1980), 305–323 | DOI | MR
[50] Light W. A., “Ridge functions, sigmoidal functions and neural networks”, Approximation Theory VII (Austin, TX, 1992), Acad. Press, Boston, MA, 1993, 163–206 | MR
[51] Lin V. Ya., Pinkus A., “Fundamentality of ridge functions”, J. Approx. Theory, 75:3 (1993), 295–311 | DOI | MR | Zbl
[52] Logan B. F., Shepp L. A., “Optimal reconstruction of a function from its projections”, Duke Math. J., 42:4 (1975), 645–659 | DOI | MR | Zbl
[53] Lorentz G. G., “Metric entropy, widths, and superpositions of functions”, Amer. Math. Monthly, 69 (1962), 469–485 | DOI | MR | Zbl
[54] Maiorov V., Pinkus A., “Lower bounds for approximation by MLP neural networks”, Neurocomputing, 25 (1999), 81–91 | DOI | Zbl
[55] Maiorov V., “Approximation by neural networks and learning theory”, J. Complexity, 22:1 (2006), 102–117 | DOI | MR | Zbl
[56] Maiorov V. E., “On best approximation by ridge functions”, J. Approx. Theory, 99:1 (1999), 68–94 | DOI | MR | Zbl
[57] Marr R. B., “On the reconstruction of a function on a circular domain from a sampling of its line integrals”, J. Math. Anal. Appl., 45 (1974), 357–374 | DOI | MR | Zbl
[58] Marshall D. E., O'Farrell A. G., “Approximation by a sum of two algebras. The lightning bolt principle”, J. Funct. Anal., 52:3 (1983), 353–368 | DOI | MR | Zbl
[59] Marshall D. E., O'Farrell A. G., “Uniform approximation by real functions”, Fund. Math., 104:3 (1979), 203–211 | MR | Zbl
[60] Natterer F., The mathematics of computerized tomography, J. Wiley, Lfd., Chichester, 1986 | MR | Zbl
[61] Oskolkov K. I., “Relefnaya approksimatsiya, analiz Fure–Chebysheva i optimalnye kvadraturnye formuly”, Tr. MIAN, 219, 1997, 269–285 | MR | Zbl
[62] Ostrand P. A., “Dimension of metric spaces and Hilbert's problem 13”, Bull. Amer. Math. Soc., 71 (1965), 619–622 | DOI | MR | Zbl
[63] Petrushev P. P., “Approximation by ridge functions and neural networks”, SIAM J. Math. Anal., 30:1 (1998), 155–189 | DOI | MR
[64] Pinkus A., “Approximating by ridge functions”, Surface Fitting and Multiresolution Methods, Vanderbilt Univ. Press, Nashville, 1997, 279–292 | MR | Zbl
[65] Pinkus A., “Approximation theory of the MLP model in neural networks”, Acta Numer., 8 (1999), 143–195 | DOI | MR | Zbl
[66] Rudin W., Functional analysis, McGraw-Hill Ser. Higher Math., McGraw-Hill Book Co., New York, 1973 | MR | Zbl
[67] Sanguineti M., “Universal approximation by ridge computational models and neural networks: a survey”, Open Appl. Math. J., 2:1 (2008), 31–58 | DOI | MR | Zbl
[68] Schwartz L., “Theorie generale des fonctions moyenne-periodiques”, Ann. of Math. (2), 48 (1947), 857–928 | DOI | MR
[69] Shin Y., Ghosh J., “Ridge polynomial networks”, IEEE Trans. Neural Networks, 6 (1995), 610–622 | DOI
[70] Sprecher D. A., “An improvement in the superposition theorem of Kolmogorov”, J. Math. Anal. Appl., 38 (1972), 208–213 | DOI | MR | Zbl
[71] Sproston J. P., Strauss D., “Sums of subalgebras of $\mathrm{C(X)}$”, J. London Math. Soc. (2), 45:2 (1992), 265–278 | DOI | MR | Zbl
[72] Sternfeld Y., “Dimension, superposition of functions and separation of points, in compact metric spaces”, Israel J. Math., 50:1–2 (1985), 13–53 | DOI | MR | Zbl
[73] Sternfeld Y., “Uniform separation of points and measures and representation by sums of algebras”, Israel J. Math., 55:3 (1986), 350–362 | DOI | MR | Zbl
[74] Sternfeld Y., “Uniformly separating families of functions”, Israel J. Math., 29:1 (1978), 61–91 | DOI | MR | Zbl
[75] Stinchcombe M., White H., “Approximating and learning unknown mappings using multilayer feedforward networks with bounded weights”, Proc. Internat. Joint Conf. Neural Networks, v. 3, IEEE, New York, 1990, 7–16 | MR
[76] Temlyakov V. N., On approximation by ridge functions, Preprint, Depart. Math., Univ. South Carolina, 1996
[77] Vitushkin A. G., Khenkin G. M., “Lineinye superpozitsii funktsii”, Uspekhi mat. nauk, 22:1 (1967), 77–124 | MR | Zbl
[78] Vostretsov B. A., Kreines M. A, “O priblizhenii nepreryvnykh funktsii superpozitsiyami ploskikh voln”, Dokl. AN SSSR, 140:6 (1961), 1237–1240 | Zbl
[79] Wu W., Feng G., Li X., “Training multilayer perceptrons via minimization of sum of ridge functions”, Adv. Comput. Math., 17:4 (2002), 331–347 | DOI | MR | Zbl
[80] Xie T. F., Cao F. L., “The ridge function representation of polynomials and an application to neural networks”, Acta Math. Sin. (Engl. Ser.), 27:11 (2011), 2169–2176 | DOI | MR | Zbl