Induced bounded remainder sets
Algebra i analiz, Tome 28 (2016) no. 5, pp. 171-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

The induced two-dimensional Rauzy tilings are generalized to tiling of the tori $\mathbb {T}^D= \mathbb {R}^D/ \mathbb {Z}^D$ of arbitrary dimension $D$. For that, a technique of embedding $T\stackrel {\operatorname {em}}{\hookrightarrow } \mathbb {T}^D$ of toric developments $T$ into the torus $\mathbb {T}^D_L = \mathbb {R}^D/ L$ for some lattice $L$ is used. A feature of the developments $T$ is that for a given shift $S: \mathbb {T}^D \longrightarrow \mathbb {T}^D$ of the torus, its restriction $S|_T$ to the subset $T \subset \mathbb {T}^D$, i.e., the first recurrence map, or the Poincaré map, is equivalent to an exchange transformation of the tiles $T_k$ that form a tiling of the development $T=T_0\sqcup T_1\sqcup \dots \sqcup T_D$. In the case under consideration, the induced map $S|_T$ is a translation of the torus $\mathbb {T}^D_L$. It is proved that every $T_k$ is a bounded remainder set: the deviations $\delta _{T_k}(i,x_{0})$ in the formula $r_{T_k}(i,x_{0})= a_{T_k} i + \delta _{T_k}(i,x_{0})$ are bounded, where $r_{T}(i,x_{0})$ is the number of occurrences of the points $S^{0}(x_{0}), S^{1}(x_{0}),\dots , S^{i-1}(x_{0})$ from the $S$-orbit in the set $T_k$, $x_0$ is an arbitrary starting point on the torus $\mathbb {T}^D$, and the coefficient $a_{T_k}$ equals the volume of $T_k$. Explicit estimates are obtained for these deviations $\delta _{T_k}(i,x_{0})$. Earlier, the relationship between the maps $S|_T$ and bounded remainder sets was noticed by Rauzy and Ferenczi.
Keywords: Poincaré map, bounded remainder sets.
@article{AA_2016_28_5_a3,
     author = {V. G. Zhuravlev},
     title = {Induced bounded remainder sets},
     journal = {Algebra i analiz},
     pages = {171--194},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a3/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Induced bounded remainder sets
JO  - Algebra i analiz
PY  - 2016
SP  - 171
EP  - 194
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_5_a3/
LA  - ru
ID  - AA_2016_28_5_a3
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Induced bounded remainder sets
%J Algebra i analiz
%D 2016
%P 171-194
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_5_a3/
%G ru
%F AA_2016_28_5_a3
V. G. Zhuravlev. Induced bounded remainder sets. Algebra i analiz, Tome 28 (2016) no. 5, pp. 171-194. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a3/

[1] Abrosimova A. A., “Srednie znacheniya otklonenii dlya raspredeleniya tochek na tore”, Nauch. vedomosti BelGU. Ser. Mat. Fiz., 26:5 (2012), 5–11

[2] Voronoi G. F., Sobranie sochinenii, v. 2, Izd-vo AN Ukr. SSR, Kiev, 1952

[3] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. mat., 71:2 (2007), 89–122 | DOI | MR | Zbl

[4] Zhuravlev V. G., “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 322, 2005, 83–106 | MR | Zbl

[5] Zhuravlev V. G., “Mnogomernaya teorema Gekke o raspredelenii drobnykh dolei”, Algebra i analiz, 24:1 (2012), 95–130 | MR | Zbl

[6] Zhuravlev V. G., “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145

[7] Zhuravlev V. G., “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika. 1, K 75-letiyu so dnya rozhdeniya A. A. Karatsuby, Sovrem. probl. mat., 16, MIAN, M., 2012, 82–102 | DOI | Zbl

[8] Shutov A. V., “Ob odnom semeistve dvumernykh mnozhestv ogranichennogo ostatka”, Chebyshevskii sb., 12:4 (2011), 264–271 | MR | Zbl

[9] Fedorov E. S., Nachala ucheniya o figurakh, Izd-vo AN SSSR, M., 1953 | MR

[10] Ferenczi S., “Bounded remaider sets”, Acta Arith., 61:4 (1992), 319–326 | MR | Zbl

[11] Hecke E., “Über analytische Funktionen und die Verteilung von Zahlen mod. Eins”, Abh. Math. Sem. Hamburg. Univ., 1:1 (1921), 54–76 | DOI | MR | Zbl

[12] Rauzy G., “Ensembles à restes bornés”, Sém. Number Theory, 1983–1984 (Talence, 1983/84), Univ. Bordeaux I, Talence, 1984, Exp. No. 24 | MR | Zbl

[13] Weyl H., “Über die Gleichverteilung von Zahlen $\mathrm{mod}$ Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl