Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_5_a2, author = {M. B. Dubashinskiǐ}, title = {Interpolation by periods in a~planar domain}, journal = {Algebra i analiz}, pages = {61--170}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a2/} }
M. B. Dubashinskiǐ. Interpolation by periods in a~planar domain. Algebra i analiz, Tome 28 (2016) no. 5, pp. 61-170. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a2/
[1] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[2] Bari N. K., “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uchen. zap. Mosk. un-ta. Ser. mat., 148:4 (1951), 69–107
[3] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[4] de Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1956
[5] Katok S. B., Fuksovy gruppy, Faktorial-press, M., 2002
[6] Khardi G. G., Littlvud Dzh. E., Poia G., Neravenstva, IL, M., 1948
[7] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[8] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR
[9] Malinnikova E. V., Khavin V. P., “Ravnomernoe priblizhenie garmonicheskimi differentsialnymi formami. Konstruktivnyi podkhod”, Algebra i analiz, 9:6 (1997), 156–196 | MR | Zbl
[10] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980
[11] Presa Sage A., Khavin V. P., “Ravnomernoe priblizhenie garmonicheskimi differentsialnymi formami v evklidovom prostranstve”, Algebra i analiz, 7:6 (1995), 104–152 | MR | Zbl
[12] Accola R. D. M., “Differentials and extremal length on Riemann surfaces”, Proc. Nat. Acad. Sci. USA, 46:4 (1960), 540–543 | DOI | MR | Zbl
[13] Yamaguchi H., “Equilibrium vector potentials in $\mathbb R^3$”, Hokkaido Math. J., 25:1 (1996), 1–53 | DOI | MR | Zbl
[14] Fuglede B., “Extremal length and functional completion”, Acta Math., 98:3 (1957), 171–218 | DOI | MR
[15] Fuglede B., Extremal length and closed extensions of partial differential operators, Jul. Giellerups Boghandel, Copenhagen, 1960 | MR | Zbl
[16] Seip K., Interpolation and sampling in spaces of analytic functions, Univ. Lecture Ser., 33, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[17] Schwarz G., Hodge decomposition – a method for solving boundary value problems, Lecture Notes in Math., 1607, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl