Interpolation by periods in a~planar domain
Algebra i analiz, Tome 28 (2016) no. 5, pp. 61-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega \subset \mathbb {R}^2$ be a countably connected domain. With any closed differential form of degree $1$ in $\Omega$ with components in $L^2(\Omega )$ one associates the sequence of its periods around the holes in $\Omega$, that is around the bounded connected components of $\mathbb R^2\setminus \Omega$. For which $\Omega$ the collection of such period sequences coincides with $\ell ^2$? We give an answer in terms of metric properties of holes in $\Omega$.
Keywords: Infinitely-connected domain, periods of forms, interpolation, Riesz basis, harmonic functions.
@article{AA_2016_28_5_a2,
     author = {M. B. Dubashinskiǐ},
     title = {Interpolation by periods in a~planar domain},
     journal = {Algebra i analiz},
     pages = {61--170},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a2/}
}
TY  - JOUR
AU  - M. B. Dubashinskiǐ
TI  - Interpolation by periods in a~planar domain
JO  - Algebra i analiz
PY  - 2016
SP  - 61
EP  - 170
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_5_a2/
LA  - ru
ID  - AA_2016_28_5_a2
ER  - 
%0 Journal Article
%A M. B. Dubashinskiǐ
%T Interpolation by periods in a~planar domain
%J Algebra i analiz
%D 2016
%P 61-170
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_5_a2/
%G ru
%F AA_2016_28_5_a2
M. B. Dubashinskiǐ. Interpolation by periods in a~planar domain. Algebra i analiz, Tome 28 (2016) no. 5, pp. 61-170. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a2/

[1] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[2] Bari N. K., “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uchen. zap. Mosk. un-ta. Ser. mat., 148:4 (1951), 69–107

[3] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[4] de Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1956

[5] Katok S. B., Fuksovy gruppy, Faktorial-press, M., 2002

[6] Khardi G. G., Littlvud Dzh. E., Poia G., Neravenstva, IL, M., 1948

[7] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[8] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[9] Malinnikova E. V., Khavin V. P., “Ravnomernoe priblizhenie garmonicheskimi differentsialnymi formami. Konstruktivnyi podkhod”, Algebra i analiz, 9:6 (1997), 156–196 | MR | Zbl

[10] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980

[11] Presa Sage A., Khavin V. P., “Ravnomernoe priblizhenie garmonicheskimi differentsialnymi formami v evklidovom prostranstve”, Algebra i analiz, 7:6 (1995), 104–152 | MR | Zbl

[12] Accola R. D. M., “Differentials and extremal length on Riemann surfaces”, Proc. Nat. Acad. Sci. USA, 46:4 (1960), 540–543 | DOI | MR | Zbl

[13] Yamaguchi H., “Equilibrium vector potentials in $\mathbb R^3$”, Hokkaido Math. J., 25:1 (1996), 1–53 | DOI | MR | Zbl

[14] Fuglede B., “Extremal length and functional completion”, Acta Math., 98:3 (1957), 171–218 | DOI | MR

[15] Fuglede B., Extremal length and closed extensions of partial differential operators, Jul. Giellerups Boghandel, Copenhagen, 1960 | MR | Zbl

[16] Seip K., Interpolation and sampling in spaces of analytic functions, Univ. Lecture Ser., 33, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl

[17] Schwarz G., Hodge decomposition – a method for solving boundary value problems, Lecture Notes in Math., 1607, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl