Asymptotics of parabolic Green's functions on lattices
Algebra i analiz, Tome 28 (2016) no. 5, pp. 21-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For parabolic spatially discrete equations, we consider Green's functions, also known as heat kernels on lattices. We obtain their asymptotic expansions with respect to powers of time variable $t$ up to an arbitrary order and estimate the remainders uniformly on the entire lattice. The spatially discrete (difference) operators under consideration are finite-difference approximations of continuous strongly elliptic differential operators (with constant coefficients) of arbitrary even order in $\mathbb R^d$ with arbitrary $d\in\mathbb N$. This genericity, besides numerical and deterministic lattice-dynamics applications, allows one to obtain higher-order asymptotics of transition probability functions for continuous-time random walks on $\mathbb Z^d$ and other lattices.
Keywords: spatially discrete parabolic equations, asymptotics, discrete Green functions, lattice Green functions, heat kernels of lattices, continuous-time random walks.
@article{AA_2016_28_5_a1,
     author = {P. Gurevich},
     title = {Asymptotics of parabolic {Green's} functions on lattices},
     journal = {Algebra i analiz},
     pages = {21--60},
     year = {2016},
     volume = {28},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a1/}
}
TY  - JOUR
AU  - P. Gurevich
TI  - Asymptotics of parabolic Green's functions on lattices
JO  - Algebra i analiz
PY  - 2016
SP  - 21
EP  - 60
VL  - 28
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_5_a1/
LA  - en
ID  - AA_2016_28_5_a1
ER  - 
%0 Journal Article
%A P. Gurevich
%T Asymptotics of parabolic Green's functions on lattices
%J Algebra i analiz
%D 2016
%P 21-60
%V 28
%N 5
%U http://geodesic.mathdoc.fr/item/AA_2016_28_5_a1/
%G en
%F AA_2016_28_5_a1
P. Gurevich. Asymptotics of parabolic Green's functions on lattices. Algebra i analiz, Tome 28 (2016) no. 5, pp. 21-60. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a1/

[1] Ashyralyev A., Sobolevskii P. E., Well-posedness of parabolic difference equations, Oper. Theory Adv. Appl., 69, Birkhäuser Verlag, Basel, 1994 | MR

[2] Beyn W.-J., “Discrete Green's functions and strong stability properties of the finite difference method”, Applicable Anal., 14:2 (1982/83), 73–98 | MR | Zbl

[3] Bramble J. H., Thomée V., “Pointwise bounds for discrete Green's functions”, SIAM J. Numer. Anal., 6 (1969), 583–590 | DOI | MR

[4] Delmotte T., Deuschel J.-D., “On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to $\nabla\phi$ interface model”, Probab. Theory Related Fields, 133:3 (2005), 358–390 | DOI | MR | Zbl

[5] Duffin R., “Discrete potential theory”, Duke Math. J., 20 (1953), 233–251 | DOI | MR

[6] Frank L., “Factorization for difference operators”, J. Math. Anal. Appl., 62:1 (1978), 170–185 | DOI | MR | Zbl

[7] Grünbaum F. A., Iliev P., “Heat kernel expansions on the integers”, Math. Phys. Anal. Geom., 5:2 (2002), 183–200 | DOI | MR | Zbl

[8] Gurevich P., Tikhomirov S., Spatially discrete reaction-diffusion equations with discontinuous hysteresis, arXiv: 1504.02385

[9] Guttmann A., “Lattice Green's functions in all dimensions”, J. Phys. A, 43:30 (2010), 305205, 26 pp. | DOI | MR | Zbl

[10] Iliev P., “Heat kernel expansions on the integers and the Toda lattice hierarchy”, Selecta Math. (N.S.), 13:3 (2007), 497–530 | DOI | MR | Zbl

[11] Joyce G., “On the cubic modular transformation and the cubic lattice Green functions”, J. Phys. A: Math. Gen., 31 (1998), 5105–5115 | DOI | Zbl

[12] Katsura S., Morita T., Inawashiro S., Horiguchi T., Abe Y., “Lattice Green's function. Introduction”, J. Math. Phys., 12 (1971), 892–895 | DOI | MR | Zbl

[13] Lawler G., Limic V., Random walk: a modern introduction, Cambridge Stud. Adv. Math., 123, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[14] Lifanov I. K., Poltavskii L. N., Vainikko G. M., Hypersingular integral equations and their applications, CRC Press, Boca Raton, FL, 2004 | MR | Zbl

[15] Mangad M., “Asymptotic expansions of Fourier transforms and discrete polyharmonic Green's functions”, Pacific J. Math., 20 (1967), 85–98 | DOI | MR | Zbl

[16] Marahrens D., Otto F., “Annealed estimates on the Green function”, Probab. Theory Related Fields, 163:3 (2015), 527–573 | DOI | MR | Zbl

[17] Martinsson P.-G., Rodin G., “Asymptotic expansions of lattice Green's functions”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458:2027 (2002), 2609–2622 | DOI | MR | Zbl

[18] Murata M., “Large time asymptotics for fundamental solutions of diffusion equations”, Tohoku Math. J. (2), 37:2 (1985), 151–195 | DOI | MR

[19] Norris J. R., “Long-time behaviour of heat flow: global estimates and exact asymptotics”, Arch. Rational Mech. Anal., 140:2 (1997), 161–195 | DOI | MR | Zbl

[20] Pang M., “Heat kernels of graphs”, J. London Math. Soc. (2), 47:1 (1993), 50–64 | DOI | MR | Zbl

[21] Pinchover Y., “Some aspects of large time behavior of the heat kernel: an overview with perspectives”, Mathematical Physics, Spectral Theory and Stochastic Analysis, Oper. Theory Adv. Appl., 232, Birkhäuser/Springer Basel AG, Basel, 2013, 299–339 | DOI | MR | Zbl

[22] Tsuchida T., “Long-time asymptotics of heat kernels for one-dimensional elliptic operators with periodic coefficients”, Proc. Lond. Math. Soc. (3), 97:2 (2008), 450–476 | DOI | MR | Zbl