Asymptotics of parabolic Green's functions on lattices
Algebra i analiz, Tome 28 (2016) no. 5, pp. 21-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

For parabolic spatially discrete equations, we consider Green's functions, also known as heat kernels on lattices. We obtain their asymptotic expansions with respect to powers of time variable $t$ up to an arbitrary order and estimate the remainders uniformly on the entire lattice. The spatially discrete (difference) operators under consideration are finite-difference approximations of continuous strongly elliptic differential operators (with constant coefficients) of arbitrary even order in $\mathbb R^d$ with arbitrary $d\in\mathbb N$. This genericity, besides numerical and deterministic lattice-dynamics applications, allows one to obtain higher-order asymptotics of transition probability functions for continuous-time random walks on $\mathbb Z^d$ and other lattices.
Keywords: spatially discrete parabolic equations, asymptotics, discrete Green functions, lattice Green functions, heat kernels of lattices, continuous-time random walks.
@article{AA_2016_28_5_a1,
     author = {P. Gurevich},
     title = {Asymptotics of parabolic {Green's} functions on lattices},
     journal = {Algebra i analiz},
     pages = {21--60},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a1/}
}
TY  - JOUR
AU  - P. Gurevich
TI  - Asymptotics of parabolic Green's functions on lattices
JO  - Algebra i analiz
PY  - 2016
SP  - 21
EP  - 60
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_5_a1/
LA  - en
ID  - AA_2016_28_5_a1
ER  - 
%0 Journal Article
%A P. Gurevich
%T Asymptotics of parabolic Green's functions on lattices
%J Algebra i analiz
%D 2016
%P 21-60
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_5_a1/
%G en
%F AA_2016_28_5_a1
P. Gurevich. Asymptotics of parabolic Green's functions on lattices. Algebra i analiz, Tome 28 (2016) no. 5, pp. 21-60. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a1/

[1] Ashyralyev A., Sobolevskii P. E., Well-posedness of parabolic difference equations, Oper. Theory Adv. Appl., 69, Birkhäuser Verlag, Basel, 1994 | MR

[2] Beyn W.-J., “Discrete Green's functions and strong stability properties of the finite difference method”, Applicable Anal., 14:2 (1982/83), 73–98 | MR | Zbl

[3] Bramble J. H., Thomée V., “Pointwise bounds for discrete Green's functions”, SIAM J. Numer. Anal., 6 (1969), 583–590 | DOI | MR

[4] Delmotte T., Deuschel J.-D., “On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to $\nabla\phi$ interface model”, Probab. Theory Related Fields, 133:3 (2005), 358–390 | DOI | MR | Zbl

[5] Duffin R., “Discrete potential theory”, Duke Math. J., 20 (1953), 233–251 | DOI | MR

[6] Frank L., “Factorization for difference operators”, J. Math. Anal. Appl., 62:1 (1978), 170–185 | DOI | MR | Zbl

[7] Grünbaum F. A., Iliev P., “Heat kernel expansions on the integers”, Math. Phys. Anal. Geom., 5:2 (2002), 183–200 | DOI | MR | Zbl

[8] Gurevich P., Tikhomirov S., Spatially discrete reaction-diffusion equations with discontinuous hysteresis, arXiv: 1504.02385

[9] Guttmann A., “Lattice Green's functions in all dimensions”, J. Phys. A, 43:30 (2010), 305205, 26 pp. | DOI | MR | Zbl

[10] Iliev P., “Heat kernel expansions on the integers and the Toda lattice hierarchy”, Selecta Math. (N.S.), 13:3 (2007), 497–530 | DOI | MR | Zbl

[11] Joyce G., “On the cubic modular transformation and the cubic lattice Green functions”, J. Phys. A: Math. Gen., 31 (1998), 5105–5115 | DOI | Zbl

[12] Katsura S., Morita T., Inawashiro S., Horiguchi T., Abe Y., “Lattice Green's function. Introduction”, J. Math. Phys., 12 (1971), 892–895 | DOI | MR | Zbl

[13] Lawler G., Limic V., Random walk: a modern introduction, Cambridge Stud. Adv. Math., 123, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[14] Lifanov I. K., Poltavskii L. N., Vainikko G. M., Hypersingular integral equations and their applications, CRC Press, Boca Raton, FL, 2004 | MR | Zbl

[15] Mangad M., “Asymptotic expansions of Fourier transforms and discrete polyharmonic Green's functions”, Pacific J. Math., 20 (1967), 85–98 | DOI | MR | Zbl

[16] Marahrens D., Otto F., “Annealed estimates on the Green function”, Probab. Theory Related Fields, 163:3 (2015), 527–573 | DOI | MR | Zbl

[17] Martinsson P.-G., Rodin G., “Asymptotic expansions of lattice Green's functions”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458:2027 (2002), 2609–2622 | DOI | MR | Zbl

[18] Murata M., “Large time asymptotics for fundamental solutions of diffusion equations”, Tohoku Math. J. (2), 37:2 (1985), 151–195 | DOI | MR

[19] Norris J. R., “Long-time behaviour of heat flow: global estimates and exact asymptotics”, Arch. Rational Mech. Anal., 140:2 (1997), 161–195 | DOI | MR | Zbl

[20] Pang M., “Heat kernels of graphs”, J. London Math. Soc. (2), 47:1 (1993), 50–64 | DOI | MR | Zbl

[21] Pinchover Y., “Some aspects of large time behavior of the heat kernel: an overview with perspectives”, Mathematical Physics, Spectral Theory and Stochastic Analysis, Oper. Theory Adv. Appl., 232, Birkhäuser/Springer Basel AG, Basel, 2013, 299–339 | DOI | MR | Zbl

[22] Tsuchida T., “Long-time asymptotics of heat kernels for one-dimensional elliptic operators with periodic coefficients”, Proc. Lond. Math. Soc. (3), 97:2 (2008), 450–476 | DOI | MR | Zbl