Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_5_a0, author = {S. V. Buyalo}, title = {M\"obius and {sub-M\"obius} structures}, journal = {Algebra i analiz}, pages = {1--20}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a0/} }
S. V. Buyalo. M\"obius and sub-M\"obius structures. Algebra i analiz, Tome 28 (2016) no. 5, pp. 1-20. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a0/
[1] Bourdon M., “Structure conforme au bord et flot géodésique d'un $\mathrm{CAT}(-1)$-espace”, Enseign. Math. (2), 41:1–2 (1995), 63–102 | MR | Zbl
[2] Buyalo S., Schroeder V., Elements of asymptotic geometry, EMS Monogr. Math., Europ. Math. Soc. (EMS), Zürich, 2007 | MR | Zbl
[3] Miao R., Schroeder V., Hyperbolic spaces and Ptolemy Möbius structures, 2012, arXiv: 1210.5133v1[math.MG]
[4] Mineyev I., “Metric conformal structures and hyperbolic dimension”, Conform. Geom. Dyn., 11 (2007), 137–163, (electronic) | DOI | MR | Zbl
[5] Foertsch T., Schroeder V., “Hyperbolicity, $\mathrm{CAT}(-1)$-spaces and the Ptolemy inequality”, Math. Ann., 350:2 (2011), 339–356 | DOI | MR | Zbl