M\"obius and sub-M\"obius structures
Algebra i analiz, Tome 28 (2016) no. 5, pp. 1-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a sub-Möbius structure is introduced, and necessary and sufficient conditions are found under which a sub-Möbius structure is a Möbius structure. It is shown that on the boundary at infinity $\partial _{\infty } Y$ of every Gromov hyperbolic space $Y$ there is a canonical sub-Möbius structure invariant under the isometries of $Y$ and such that the sub-Möbius topology on $\partial _{\infty } Y$ coincides with the standard one.
Keywords: Möbius structure, cross-ratio, hyperbolic space.
@article{AA_2016_28_5_a0,
     author = {S. V. Buyalo},
     title = {M\"obius and {sub-M\"obius} structures},
     journal = {Algebra i analiz},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a0/}
}
TY  - JOUR
AU  - S. V. Buyalo
TI  - M\"obius and sub-M\"obius structures
JO  - Algebra i analiz
PY  - 2016
SP  - 1
EP  - 20
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_5_a0/
LA  - ru
ID  - AA_2016_28_5_a0
ER  - 
%0 Journal Article
%A S. V. Buyalo
%T M\"obius and sub-M\"obius structures
%J Algebra i analiz
%D 2016
%P 1-20
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_5_a0/
%G ru
%F AA_2016_28_5_a0
S. V. Buyalo. M\"obius and sub-M\"obius structures. Algebra i analiz, Tome 28 (2016) no. 5, pp. 1-20. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a0/

[1] Bourdon M., “Structure conforme au bord et flot géodésique d'un $\mathrm{CAT}(-1)$-espace”, Enseign. Math. (2), 41:1–2 (1995), 63–102 | MR | Zbl

[2] Buyalo S., Schroeder V., Elements of asymptotic geometry, EMS Monogr. Math., Europ. Math. Soc. (EMS), Zürich, 2007 | MR | Zbl

[3] Miao R., Schroeder V., Hyperbolic spaces and Ptolemy Möbius structures, 2012, arXiv: 1210.5133v1[math.MG]

[4] Mineyev I., “Metric conformal structures and hyperbolic dimension”, Conform. Geom. Dyn., 11 (2007), 137–163, (electronic) | DOI | MR | Zbl

[5] Foertsch T., Schroeder V., “Hyperbolicity, $\mathrm{CAT}(-1)$-spaces and the Ptolemy inequality”, Math. Ann., 350:2 (2011), 339–356 | DOI | MR | Zbl