Möbius and sub-Möbius structures
Algebra i analiz, Tome 28 (2016) no. 5, pp. 1-20
Cet article a éte moissonné depuis la source Math-Net.Ru
The notion of a sub-Möbius structure is introduced, and necessary and sufficient conditions are found under which a sub-Möbius structure is a Möbius structure. It is shown that on the boundary at infinity $\partial _{\infty } Y$ of every Gromov hyperbolic space $Y$ there is a canonical sub-Möbius structure invariant under the isometries of $Y$ and such that the sub-Möbius topology on $\partial _{\infty } Y$ coincides with the standard one.
Mots-clés :
Möbius structure
Keywords: cross-ratio, hyperbolic space.
Keywords: cross-ratio, hyperbolic space.
@article{AA_2016_28_5_a0,
author = {S. V. Buyalo},
title = {M\"obius and {sub-M\"obius} structures},
journal = {Algebra i analiz},
pages = {1--20},
year = {2016},
volume = {28},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a0/}
}
S. V. Buyalo. Möbius and sub-Möbius structures. Algebra i analiz, Tome 28 (2016) no. 5, pp. 1-20. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a0/
[1] Bourdon M., “Structure conforme au bord et flot géodésique d'un $\mathrm{CAT}(-1)$-espace”, Enseign. Math. (2), 41:1–2 (1995), 63–102 | MR | Zbl
[2] Buyalo S., Schroeder V., Elements of asymptotic geometry, EMS Monogr. Math., Europ. Math. Soc. (EMS), Zürich, 2007 | MR | Zbl
[3] Miao R., Schroeder V., Hyperbolic spaces and Ptolemy Möbius structures, 2012, arXiv: 1210.5133v1[math.MG]
[4] Mineyev I., “Metric conformal structures and hyperbolic dimension”, Conform. Geom. Dyn., 11 (2007), 137–163, (electronic) | DOI | MR | Zbl
[5] Foertsch T., Schroeder V., “Hyperbolicity, $\mathrm{CAT}(-1)$-spaces and the Ptolemy inequality”, Math. Ann., 350:2 (2011), 339–356 | DOI | MR | Zbl