Subring subgroups of symplectic groups in characteristic~2
Algebra i analiz, Tome 28 (2016) no. 4, pp. 47-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2012, the second author obtained a description of the lattice of subgroups of a Chevalley group $G(\Phi,A)$ that contain the elementary subgroup $E(\Phi,K)$ over a subring $K\subseteq A$ provided $\Phi=B_n$, $C_n$, or $F_4$, $n\ge2$, and $2$ is invertible in $K$. It turned out that this lattice is a disjoint union of “sandwiches” parametrized by the subrings $R$ such that $K\subseteq R\subseteq A$. In the present paper, a similar result is proved in the case where $\Phi=C_n$, $n\ge3$, and $2=0$ in $K$. In this setting, more sandwiches are needed, namely those parametrized by the form rings $(R,\Lambda)$ such that $K\subseteq\Lambda\subseteq R\subseteq A$. The result generalizes Ya. N. Nuzhin's theorem of 2013 concerning the root systems $\Phi=B_n$, $C_n$, $n\ge3$, where the same description of the subgroup lattice is obtained, but under the condition that $A$ and $K$ are fields such that $A$ is algebraic over $K$.
Keywords: symplectic group, commutative ring, subgroup lattice, Bak unitary group, group identity with constants, small unipotent element, nilpotent structure of $K1$.
@article{AA_2016_28_4_a1,
     author = {A. Bak and A. Stepanov},
     title = {Subring subgroups of symplectic groups in characteristic~2},
     journal = {Algebra i analiz},
     pages = {47--61},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_4_a1/}
}
TY  - JOUR
AU  - A. Bak
AU  - A. Stepanov
TI  - Subring subgroups of symplectic groups in characteristic~2
JO  - Algebra i analiz
PY  - 2016
SP  - 47
EP  - 61
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_4_a1/
LA  - en
ID  - AA_2016_28_4_a1
ER  - 
%0 Journal Article
%A A. Bak
%A A. Stepanov
%T Subring subgroups of symplectic groups in characteristic~2
%J Algebra i analiz
%D 2016
%P 47-61
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_4_a1/
%G en
%F AA_2016_28_4_a1
A. Bak; A. Stepanov. Subring subgroups of symplectic groups in characteristic~2. Algebra i analiz, Tome 28 (2016) no. 4, pp. 47-61. http://geodesic.mathdoc.fr/item/AA_2016_28_4_a1/

[1] Abe E., “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989, 1–17 | DOI | MR

[2] Abe E., Suzuki K., “On normal subgroups of Chevalley groups over commutative rings”, Tohoku Math. J. (2), 28:2 (1976), 185–198 | DOI | MR | Zbl

[3] Bak A., The stable structure of quadratic modules, Ph. D. thesis, Columbia Univ., Columbia, USA, 1969

[4] Bak A., “Odd dimension surgery groups of odd torsion groups vanish”, Topology, 14:4 (1975), 367–374 | DOI | MR | Zbl

[5] Bak A., K-theory of forms, Ann. of Math. Stud., 98, Princeton Univ. Press, Princeton, N.J., 1981 | MR | Zbl

[6] Bak A., “Nonabelian K-theory: the nilpotent class of $\mathrm K_1$ and general stability”, K-Theory, 4:4 (1991), 363–397 | DOI | MR | Zbl

[7] Bak A., Vavilov N. A., “Normality for elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl

[8] Bak A., Vavilov N. A., “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[9] Bourbaki N., Elements of mathematics. Lie groups and Lie algebras, Chapters 4–6, Springer-Verlag, Berlin–Heidelberg–New York, 2008 | MR | Zbl

[10] Golubchik I. Z., Mikhalev A. V., “Obobschennye gruppovye tozhdestva v klassicheskikh gruppakh”, Zap. nauch. semin. LOMI, 114, 1982, 96–119 | MR | Zbl

[11] Gordeev N. L., “Freedom in conjugacy classes of simple algebraic groups and identities with constants”, Algebra i analiz, 9:4 (1998), 63–78 | MR | Zbl

[12] Hazrat R., “Dimension theory and nonstable $K_1$ of quadratic modules”, K-Theory, 27:4 (2002), 293–328 | DOI | MR | Zbl

[13] Nesterov V. V., Stepanov A. V., “Tozhdestvo s konstantami v gruppe Shevalle tipa $F_4$”, Algebra i analiz, 21:5 (2009), 196–202 | MR | Zbl

[14] Nuzhin Ya. N., “O gruppakh, zaklyuchennykh mezhdu gruppami lieva tipa nad razlichnymi polyami”, Algebra i logika, 22:5 (1983), 525–541 | MR

[15] Nuzhin Ya. N., “Gruppy, lezhaschie mezhdu gruppami Shevalle tipa $B_l$, $C_l$, $F_4$, $G_2$ nad nesovershennymi polyami kharakteristiki $2$ i $3$”, Sib. mat. zh., 54:1 (2013), 157–162 | MR | Zbl

[16] Steinberg R. G., Lectures on Chevalley groups, Yale Univ., New Haven, Conn., 1968 | MR | Zbl

[17] Stepanov A. V., “Subring subgroups in Chevalley groups with doubly laced root systems”, J. Algebra, 362 (2012), 12–29 | DOI | MR | Zbl

[18] Stepanov A. V., “Elementary calculus in Chevalley groups over rings”, J. Prime Res. Math., 9 (2013), 79–95 | MR | Zbl