Algebraic K-theory of the varieties $\mathrm{SL_{2n}/Sp}_{2n}$, $\mathrm{E_6/F}_4$ and their twisted forms
Algebra i analiz, Tome 28 (2016) no. 3, pp. 174-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2016_28_3_a5,
     author = {M. S. Yakerson},
     title = {Algebraic {K-theory} of the varieties $\mathrm{SL_{2n}/Sp}_{2n}$, $\mathrm{E_6/F}_4$ and their twisted forms},
     journal = {Algebra i analiz},
     pages = {174--189},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_3_a5/}
}
TY  - JOUR
AU  - M. S. Yakerson
TI  - Algebraic K-theory of the varieties $\mathrm{SL_{2n}/Sp}_{2n}$, $\mathrm{E_6/F}_4$ and their twisted forms
JO  - Algebra i analiz
PY  - 2016
SP  - 174
EP  - 189
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_3_a5/
LA  - ru
ID  - AA_2016_28_3_a5
ER  - 
%0 Journal Article
%A M. S. Yakerson
%T Algebraic K-theory of the varieties $\mathrm{SL_{2n}/Sp}_{2n}$, $\mathrm{E_6/F}_4$ and their twisted forms
%J Algebra i analiz
%D 2016
%P 174-189
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_3_a5/
%G ru
%F AA_2016_28_3_a5
M. S. Yakerson. Algebraic K-theory of the varieties $\mathrm{SL_{2n}/Sp}_{2n}$, $\mathrm{E_6/F}_4$ and their twisted forms. Algebra i analiz, Tome 28 (2016) no. 3, pp. 174-189. http://geodesic.mathdoc.fr/item/AA_2016_28_3_a5/

[1] Merkurev A. C., “Sravnenie ekvivariantnoi i obychnoi $\mathrm K$-teorii algebraicheskikh mnogoobrazii”, Algebra i analiz, 9:4 (1997), 175–214 | MR | Zbl

[2] Panin I. A., “Printsip rasschepleniya i $\mathrm K$-teoriya odnosvyaznykh poluprostykh algebraicheskikh grupp”, Algebra i analiz, 10:1 (1998), 88–131 | MR | Zbl

[3] Ananyevskiy A., “On the algebraic $\mathrm K$-theory of some homogeneous varieties”, Doc. Math., 17 (2012), 167–193 | MR | Zbl

[4] Levine M., “The algebraic $\mathrm K$-theory of the classical groups and some twisted forms”, Duke Math. J., 70:2 (1993), 405–443 | DOI | MR | Zbl

[5] McKay W. G., Patera J., Tables of dimensions, indices, and branching rules for representations of simple Lie algebras, Lecture Notes Pure Appl. Math., 69, M. Dekker, Inc., New York, 1981 | MR | Zbl

[6] Merkurjev A., “Equivariant $\mathrm K$-theory”, Handbook of K-theory, v. 1–2, Springer, Berlin, 2005, 925–954 | DOI | MR | Zbl

[7] Minami H., “$\mathrm K$-groups of symmetric spaces. I”, Osaka J. Math., 12:3 (1975), 623–634 | MR | Zbl

[8] Panin I., “On the algebraic $\mathrm K$-theory of twisted flag varieties”, K-Theory, 8:6 (1994), 541–585 | DOI | MR | Zbl

[9] Quillen D., “Higher algebraic $\mathrm K$-theory. I”, Lecture Notes in Math., 341, Springer, Berlin, 1972, 85–147 | DOI | MR

[10] Richardson R. W., “Affine coset spaces of reductive algebraic groups”, Bull. London Math. Soc., 9:1 (1977), 38–41 | DOI | MR | Zbl

[11] Steinberg R., “On a theorem of Pittie”, Topology, 14 (1975), 173–177 | DOI | MR | Zbl

[12] Swan R., “$\mathrm K$-theory of quadric hypersurfaces”, Ann. of Math. (2), 121:1 (1985), 113–153 | DOI | MR

[13] Tits J., “Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque”, J. Reine Angew. Math., 247 (1971), 196–220 | MR | Zbl