Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_3_a5, author = {M. S. Yakerson}, title = {Algebraic {K-theory} of the varieties $\mathrm{SL_{2n}/Sp}_{2n}$, $\mathrm{E_6/F}_4$ and their twisted forms}, journal = {Algebra i analiz}, pages = {174--189}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_3_a5/} }
TY - JOUR AU - M. S. Yakerson TI - Algebraic K-theory of the varieties $\mathrm{SL_{2n}/Sp}_{2n}$, $\mathrm{E_6/F}_4$ and their twisted forms JO - Algebra i analiz PY - 2016 SP - 174 EP - 189 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2016_28_3_a5/ LA - ru ID - AA_2016_28_3_a5 ER -
M. S. Yakerson. Algebraic K-theory of the varieties $\mathrm{SL_{2n}/Sp}_{2n}$, $\mathrm{E_6/F}_4$ and their twisted forms. Algebra i analiz, Tome 28 (2016) no. 3, pp. 174-189. http://geodesic.mathdoc.fr/item/AA_2016_28_3_a5/
[1] Merkurev A. C., “Sravnenie ekvivariantnoi i obychnoi $\mathrm K$-teorii algebraicheskikh mnogoobrazii”, Algebra i analiz, 9:4 (1997), 175–214 | MR | Zbl
[2] Panin I. A., “Printsip rasschepleniya i $\mathrm K$-teoriya odnosvyaznykh poluprostykh algebraicheskikh grupp”, Algebra i analiz, 10:1 (1998), 88–131 | MR | Zbl
[3] Ananyevskiy A., “On the algebraic $\mathrm K$-theory of some homogeneous varieties”, Doc. Math., 17 (2012), 167–193 | MR | Zbl
[4] Levine M., “The algebraic $\mathrm K$-theory of the classical groups and some twisted forms”, Duke Math. J., 70:2 (1993), 405–443 | DOI | MR | Zbl
[5] McKay W. G., Patera J., Tables of dimensions, indices, and branching rules for representations of simple Lie algebras, Lecture Notes Pure Appl. Math., 69, M. Dekker, Inc., New York, 1981 | MR | Zbl
[6] Merkurjev A., “Equivariant $\mathrm K$-theory”, Handbook of K-theory, v. 1–2, Springer, Berlin, 2005, 925–954 | DOI | MR | Zbl
[7] Minami H., “$\mathrm K$-groups of symmetric spaces. I”, Osaka J. Math., 12:3 (1975), 623–634 | MR | Zbl
[8] Panin I., “On the algebraic $\mathrm K$-theory of twisted flag varieties”, K-Theory, 8:6 (1994), 541–585 | DOI | MR | Zbl
[9] Quillen D., “Higher algebraic $\mathrm K$-theory. I”, Lecture Notes in Math., 341, Springer, Berlin, 1972, 85–147 | DOI | MR
[10] Richardson R. W., “Affine coset spaces of reductive algebraic groups”, Bull. London Math. Soc., 9:1 (1977), 38–41 | DOI | MR | Zbl
[11] Steinberg R., “On a theorem of Pittie”, Topology, 14 (1975), 173–177 | DOI | MR | Zbl
[12] Swan R., “$\mathrm K$-theory of quadric hypersurfaces”, Ann. of Math. (2), 121:1 (1985), 113–153 | DOI | MR
[13] Tits J., “Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque”, J. Reine Angew. Math., 247 (1971), 196–220 | MR | Zbl