Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_3_a2, author = {P. A. Mozolyako and V. P. Khavin}, title = {Boundedness of variation of a~positive harmonic function along the normals to the boundary}, journal = {Algebra i analiz}, pages = {67--110}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_3_a2/} }
TY - JOUR AU - P. A. Mozolyako AU - V. P. Khavin TI - Boundedness of variation of a~positive harmonic function along the normals to the boundary JO - Algebra i analiz PY - 2016 SP - 67 EP - 110 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2016_28_3_a2/ LA - ru ID - AA_2016_28_3_a2 ER -
P. A. Mozolyako; V. P. Khavin. Boundedness of variation of a~positive harmonic function along the normals to the boundary. Algebra i analiz, Tome 28 (2016) no. 3, pp. 67-110. http://geodesic.mathdoc.fr/item/AA_2016_28_3_a2/
[1] Axler Sh., Bourdon P., Ramey W., Harmonic function theory, Grad. Text. Math., 137, Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[2] Bourgain J., “On the radial variation of bounded analytic functions on the disc”, Duke Math. J., 69:3 (1993), 671–682 | DOI | MR | Zbl
[3] Burgein Zh., “Ogranichennost variatsii svertok mer”, Mat. zametki, 54:4 (1993), 24–33 | MR | Zbl
[4] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR
[5] Brelo M., O topologiyakh i granitsakh v teorii potentsiala, Mir, M., 1974 | MR
[6] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR
[7] Gyunter N. M., Teoriya potentsiala i ee primeneniya k osnovnym zadacham matematicheskoi fiziki, GITTL, M., 1953 | MR
[8] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Fizmatgiz, M., 1970 | MR
[9] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1974
[10] Hunt R., Wheeden R., “Positive harmonic functions on Lipschitz domains”, Trans. Amer. Math. Soc., 147 (1970), 507–527 | DOI | MR | Zbl
[11] Hunt R., Wheeden R., “On the boundary values of harmonic functions”, Trans. Amer. Math. Soc., 132:2 (1968), 307–322 | DOI | MR | Zbl
[12] Jones P., “A complete bounded submanifold in $C^3$”, Proc. Amer. Math. Soc., 76:2 (1979), 305–306 | MR | Zbl
[13] Mozolyako P. A., “Usilennaya skhodimost approksimativnykh edinits i tochki Burgeina ogranichennykh funktsii”, Dokl. RAN, 422:6 (2008), 738–740 | MR | Zbl
[14] O'Neill M. D., “Vertical variations of harmonic functions in upper half spaces”, Colloq. Math., 87:1 (2001), 1–12 | DOI | MR | Zbl
[15] Privalov I. I., Kuznetsov P. I., “Granichnye zadachi i razlichnye klassy garmonicheskikh i subgarmonicheskikh funktsii, opredelennykh v proizvolnykh oblastyakh”, Mat. sb., 6(48):3 (1939), 345–376 | MR | Zbl
[16] Rudin W., “The radial variation of analytic functions”, Duke Math. J., 22 (1955), 235–242 | DOI | MR | Zbl
[17] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974