Boundedness of variation of a~positive harmonic function along the normals to the boundary
Algebra i analiz, Tome 28 (2016) no. 3, pp. 67-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2016_28_3_a2,
     author = {P. A. Mozolyako and V. P. Khavin},
     title = {Boundedness of variation of a~positive harmonic function along the normals to the boundary},
     journal = {Algebra i analiz},
     pages = {67--110},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_3_a2/}
}
TY  - JOUR
AU  - P. A. Mozolyako
AU  - V. P. Khavin
TI  - Boundedness of variation of a~positive harmonic function along the normals to the boundary
JO  - Algebra i analiz
PY  - 2016
SP  - 67
EP  - 110
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_3_a2/
LA  - ru
ID  - AA_2016_28_3_a2
ER  - 
%0 Journal Article
%A P. A. Mozolyako
%A V. P. Khavin
%T Boundedness of variation of a~positive harmonic function along the normals to the boundary
%J Algebra i analiz
%D 2016
%P 67-110
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_3_a2/
%G ru
%F AA_2016_28_3_a2
P. A. Mozolyako; V. P. Khavin. Boundedness of variation of a~positive harmonic function along the normals to the boundary. Algebra i analiz, Tome 28 (2016) no. 3, pp. 67-110. http://geodesic.mathdoc.fr/item/AA_2016_28_3_a2/

[1] Axler Sh., Bourdon P., Ramey W., Harmonic function theory, Grad. Text. Math., 137, Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[2] Bourgain J., “On the radial variation of bounded analytic functions on the disc”, Duke Math. J., 69:3 (1993), 671–682 | DOI | MR | Zbl

[3] Burgein Zh., “Ogranichennost variatsii svertok mer”, Mat. zametki, 54:4 (1993), 24–33 | MR | Zbl

[4] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR

[5] Brelo M., O topologiyakh i granitsakh v teorii potentsiala, Mir, M., 1974 | MR

[6] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR

[7] Gyunter N. M., Teoriya potentsiala i ee primeneniya k osnovnym zadacham matematicheskoi fiziki, GITTL, M., 1953 | MR

[8] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Fizmatgiz, M., 1970 | MR

[9] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1974

[10] Hunt R., Wheeden R., “Positive harmonic functions on Lipschitz domains”, Trans. Amer. Math. Soc., 147 (1970), 507–527 | DOI | MR | Zbl

[11] Hunt R., Wheeden R., “On the boundary values of harmonic functions”, Trans. Amer. Math. Soc., 132:2 (1968), 307–322 | DOI | MR | Zbl

[12] Jones P., “A complete bounded submanifold in $C^3$”, Proc. Amer. Math. Soc., 76:2 (1979), 305–306 | MR | Zbl

[13] Mozolyako P. A., “Usilennaya skhodimost approksimativnykh edinits i tochki Burgeina ogranichennykh funktsii”, Dokl. RAN, 422:6 (2008), 738–740 | MR | Zbl

[14] O'Neill M. D., “Vertical variations of harmonic functions in upper half spaces”, Colloq. Math., 87:1 (2001), 1–12 | DOI | MR | Zbl

[15] Privalov I. I., Kuznetsov P. I., “Granichnye zadachi i razlichnye klassy garmonicheskikh i subgarmonicheskikh funktsii, opredelennykh v proizvolnykh oblastyakh”, Mat. sb., 6(48):3 (1939), 345–376 | MR | Zbl

[16] Rudin W., “The radial variation of analytic functions”, Duke Math. J., 22 (1955), 235–242 | DOI | MR | Zbl

[17] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974