Symmetric interpolatory dual wavelet frames
Algebra i analiz, Tome 28 (2016) no. 3, pp. 36-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2016_28_3_a1,
     author = {A. V. Krivoshein},
     title = {Symmetric interpolatory dual wavelet frames},
     journal = {Algebra i analiz},
     pages = {36--66},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_3_a1/}
}
TY  - JOUR
AU  - A. V. Krivoshein
TI  - Symmetric interpolatory dual wavelet frames
JO  - Algebra i analiz
PY  - 2016
SP  - 36
EP  - 66
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_3_a1/
LA  - ru
ID  - AA_2016_28_3_a1
ER  - 
%0 Journal Article
%A A. V. Krivoshein
%T Symmetric interpolatory dual wavelet frames
%J Algebra i analiz
%D 2016
%P 36-66
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_3_a1/
%G ru
%F AA_2016_28_3_a1
A. V. Krivoshein. Symmetric interpolatory dual wavelet frames. Algebra i analiz, Tome 28 (2016) no. 3, pp. 36-66. http://geodesic.mathdoc.fr/item/AA_2016_28_3_a1/

[1] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005 | MR

[2] Andaloro G., Cotronei M., Puccio L., “A new class of non-separable symmetric wavelets for image processing”, Comm. SIMAI Congress, 3 (2009), 324–336

[3] Cameron P. J., Permutation groups, London Math. Soc. Student Text, 45, Cambridge Univ. Press, Camridge, 1999 | Zbl

[4] Cavaretta A. S., Dahmen W., Micchelli C. A., Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, 1991 | MR

[5] Christensen O., Frames and bases, An introductory course. Applied and numerical harmonic analysis, Birkhauser, Boston, MA, 2008 | MR | Zbl

[6] Dyn N., Levin D., “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002), 73–144 | DOI | MR | Zbl

[7] Dyn N., Skopina M., “Decompositions of trigonometric polynomials related to multivariate subdivision schemes”, Adv. Comput. Math., 38:2 (2013), 321–349 | DOI | MR | Zbl

[8] Han B., “Construction of multivariate biorthogonal wavelets by CBC algorithm”, Adv. Comput. Math., 13:2 (2000), 131–165 | DOI | MR | Zbl

[9] Han B., “Symmetry property and construction of wavelets with a general dilation matrix”, Linear Algebra Appl., 353 (2002), 207–225 | DOI | MR | Zbl

[10] Han B., “Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix”, J. Comput. Appl. Math., 155:1 (2003), 43–67 | DOI | MR | Zbl

[11] Han B., “Computing the smoothness exponent of a symmetric multivariate refinable function”, SIAM J. Matrix Anal. Appl., 24:3 (2003), 693–714 | DOI | MR | Zbl

[12] Han B., “Symmetric multivariate orthogonal refinable functions”, Appl. Comput. Harmon. Anal., 17:3 (2004), 277–292 | DOI | MR | Zbl

[13] Han B., “Matrix extension with symmetry and applications to symmetric orthonormal complex M-wavelets”, J. Fourier Anal. Appl., 15:5 (2009), 684–705 | DOI | MR | Zbl

[14] Han B., Zhuang X. S., “Matrix extension with symmetry and its application to symmetric orthonormal multiwavelets”, SIAM J. Math. Anal., 42:5 (2010), 2297–2317 | DOI | MR | Zbl

[15] Han B., “Symmetric orthogonal filters and wavelets with linear-phase moments”, J. Comput. Appl. Math., 236:4 (2011), 482–503 | DOI | MR | Zbl

[16] Jiang Q. T., “Biorthogonal wavelets with 6-fold axial symmetry for hexagonal data and triangle surface multiresolution processing”, Int. J. Wavelets Multiresolut. Inf. Process, 9:5 (2011), 773–812 | DOI | MR | Zbl

[17] Jiang Q. T., “Bi-frames with 4-fold axial symmetry for quadrilateral surface multiresolution processing”, J. Comput. Appl. Math., 234:12 (2010), 3303–3325 | DOI | MR | Zbl

[18] Karakaz'yan S., Skopina M., Tchobanou M., “Symmetric multivariate wavelets”, Int. J. Wavelets Multiresolut. Inf. Process., 7:3 (2009), 313–340 | DOI | MR | Zbl

[19] Koch K., “Multivariate symmetric interpolating scaling vectors with duals”, J. Fourier Anal. Appl., 15:1 (2009), 1–30 | DOI | MR | Zbl

[20] Krivoshein A., “On construction of multivariate symmetric MRA-based wavelets”, Appl. Comput. Harmon. Anal., 36:2 (2014), 215–238 | DOI | MR | Zbl

[21] Krivoshein A., Skopina M., “Approximation by frame-like wavelet systems”, Appl. Comput. Harmon. Anal., 31:3 (2011), 410–428 | DOI | MR | Zbl

[22] Petukhov A., “Construction of symmetric orthogonal bases of wavelets and tight wavelet frames with integer dilation factor”, Appl. Comput. Harmon. Anal., 17:2 (2004), 198–210 | DOI | MR | Zbl

[23] Reif U., Peters J., Subdivision surfaces, Geometry Comput., 3, Springer-Verlag, Berlin, 2008 | MR | Zbl

[24] Ron A., Shen Z., “Affine systems in $L_2(R^d)$: the analysis of the analysis operator”, J. Func. Anal., 148:2 (1997), 408–447 | DOI | MR | Zbl

[25] Ron A., Shen Z., “Affine systems in $L_2(R^d)$. II. Dual systems”, J. Fourier Anal. Appl., 3:5 (1997), 617–637 | DOI | MR

[26] Skopina M., “On construction of multivariate wavelets with vanishing moments”, Appl. Comput. Harmon. Anal., 20:3 (2006), 375–390 | DOI | MR | Zbl

[27] Skopina M., “On construction of multivariate wavelet frames”, Appl. Comput. Harmon. Anal., 27:1 (2009), 55–72 | DOI | MR | Zbl

[28] Warren J., Weimer H., Subdivision methods for geometric design: a constructive approach, Morgan Kaufman, Burlington, Mass., 2001

[29] Weinmann A., “Subdivision schemes with general dilation in the geometric and nonlinear setting”, J. Approx. Theory, 164:1 (2012), 105–137 | DOI | MR | Zbl

[30] Zhuang X. S., “Matrix extension with symmetry and construction of biorthogonal multiwavelets with any integer dilation”, Appl. Comput. Harmon. Anal., 33:2 (2012), 159–181 | DOI | MR | Zbl