Spectrally reasonable measures
Algebra i analiz, Tome 28 (2016) no. 2, pp. 187-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems under study are related to measures with a natural spectrum (equal to the closure of the set of the values of the Fourier–Stieltjes transform). Since it is known that the set of all such measures does not have a Banach algebra structure, the set of all suitable perturbations called spectrally reasonable measures is considered. In particular, a broad class of spectrally reasonable measures is exhibited, which contains absolutely continuous ones. On the other hand, it is shown that except trivial cases all discrete (purely atomic) measures do not posses this property.
Keywords: natural spectrum, Wiener–Pitt phenomenon, Fourier–Stieltjes coefficients, convolution algebra, spectrum of measure.
@article{AA_2016_28_2_a7,
     author = {P. Ohrysko and M. Wojciechowski},
     title = {Spectrally reasonable measures},
     journal = {Algebra i analiz},
     pages = {187--203},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_2_a7/}
}
TY  - JOUR
AU  - P. Ohrysko
AU  - M. Wojciechowski
TI  - Spectrally reasonable measures
JO  - Algebra i analiz
PY  - 2016
SP  - 187
EP  - 203
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_2_a7/
LA  - en
ID  - AA_2016_28_2_a7
ER  - 
%0 Journal Article
%A P. Ohrysko
%A M. Wojciechowski
%T Spectrally reasonable measures
%J Algebra i analiz
%D 2016
%P 187-203
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_2_a7/
%G en
%F AA_2016_28_2_a7
P. Ohrysko; M. Wojciechowski. Spectrally reasonable measures. Algebra i analiz, Tome 28 (2016) no. 2, pp. 187-203. http://geodesic.mathdoc.fr/item/AA_2016_28_2_a7/

[1] Graham C. C., “A Riesz product proof of the Wiener–Pitt theorem”, Proc. Amer. Math. Soc., 44:2 (1974), 312–314 | DOI | MR | Zbl

[2] Hatori O., “Measures with natural spectra on locally compact abelian groups”, Proc. Amer. Math. Soc., 126:8 (1998), 2351–2353 | DOI | MR | Zbl

[3] Hatori O., Sato E., “Decompositions of measures on compact abelian groups”, Tokyo J. of Math., 24:1 (2001), 13–18 | DOI | MR | Zbl

[4] Kaniuth E., A course in commutative Banach algebras, Grad. Texts Math., 246, Springer, New York, 2009 | DOI | MR | Zbl

[5] Katznelson Y., An introduction to harmonic analysis, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[6] Ohrysko P., “An elementary proof of the decomposition of measures on the circle group”, Colloq. Math., 140:1 (2015), 1–4 | DOI | MR | Zbl

[7] Ohrysko P., Wojciechowski M., “On the relathionships between Fourier–Stieltjes coefficients and spectra of measures”, Studia Math., 221:2 (2014), 117–140 | DOI | MR | Zbl

[8] Parreau F., “Measures with real spectra”, Invent. Math., 98:2 (1989), 311–330 | DOI | MR | Zbl

[9] Rudin W., Fourier analysis on groups, Wiley Classics Library, John Wiley Sons, Inc., New York, 1990 | MR | Zbl

[10] Shreider Yu. A., “Stroenie maksimalnykh idealov v koltsakh mer so svertkoi”, Mat. sb., 27(69):2 (1950), 297–318 | MR | Zbl

[11] Williamson J. H., “A theorem on algebras of measures on topological groups”, Proc. Edinburg Math. Soc., 11 (1958/1959), 195–206 | DOI | MR

[12] Wiener N., Pitt H. R., “Absolutely convergent Fourier–Stieltjes transforms”, Duke Math. J., 4:2 (1938), 420–436 | DOI | MR | Zbl

[13] Zafran M., “On spectra of multipliers”, Pacific J. Math., 47:2 (1973), 609–626 | DOI | MR | Zbl

[14] Żelazko W., Banach Algebras, Elsevier Publ. Co., Amsterdam; PWN-Polish Sci. Publ., Warsaw, 1973 | MR | Zbl