The John--Nirenberg constant of $\mathrm{BMO}^p$, $p>2$
Algebra i analiz, Tome 28 (2016) no. 2, pp. 72-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2016_28_2_a3,
     author = {V. Vasyunin and L. Slavin},
     title = {The {John--Nirenberg} constant of $\mathrm{BMO}^p$, $p>2$},
     journal = {Algebra i analiz},
     pages = {72--96},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_2_a3/}
}
TY  - JOUR
AU  - V. Vasyunin
AU  - L. Slavin
TI  - The John--Nirenberg constant of $\mathrm{BMO}^p$, $p>2$
JO  - Algebra i analiz
PY  - 2016
SP  - 72
EP  - 96
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_2_a3/
LA  - ru
ID  - AA_2016_28_2_a3
ER  - 
%0 Journal Article
%A V. Vasyunin
%A L. Slavin
%T The John--Nirenberg constant of $\mathrm{BMO}^p$, $p>2$
%J Algebra i analiz
%D 2016
%P 72-96
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_2_a3/
%G ru
%F AA_2016_28_2_a3
V. Vasyunin; L. Slavin. The John--Nirenberg constant of $\mathrm{BMO}^p$, $p>2$. Algebra i analiz, Tome 28 (2016) no. 2, pp. 72-96. http://geodesic.mathdoc.fr/item/AA_2016_28_2_a3/

[1] Garnett J., Jones P., “The distance in $\mathrm{BMO}$ to $L^\infty$”, Ann. of Math. (2), 108:2 (1978), 373–393 | DOI | MR | Zbl

[2] Ivanishvili P., Osipov N., Stolyarov D., Vasyunin V., Zatitskiy P., “On Bellman function for extremal problems in $\mathrm{BMO}$”, C. R. Math. Acad. Sci. Paris, 350:11–12 (2012), 561–564 | DOI | MR | Zbl

[3] Ivanishvili P., Osipov N., Stolyarov D., Vasyunin V., Zatitskiy P., “Bellman function for extremal problems in $\mathrm{BMO}$”, Trans. Amer. Math. Soc., 368:5 (2016), 3415–3468 | DOI | MR

[4] Ivanishvili P., Osipov N., Stolyarov D., Vasyunin V., Zatitskiy P., “Sharp estimates of integral functionals on classes of functions with small mean oscillation”, C. R. Math. Acad. Sci. Paris, 353:12 (2015), 1081–1085 | DOI | MR

[5] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[6] Korenovskii A. A., “O svyazi mezhdu srednimi kolebaniyami i tochnymi pokazatelyami summiruemosti funktsii”, Mat. sb., 181:12 (1990), 1721–1727 | MR | Zbl

[7] Lerner A., “The John–Nirenberg inequality with sharp constants”, C. R. Math. Acad. Sci. Paris, 351:11–12 (2013), 463–466 | DOI | MR | Zbl

[8] Slavin L., The John–Nirenberg constant of $\mathrm{BMO}^p$, $1\le p\le2$, (submitted), arXiv: 1506.04969

[9] Slavin L., Vasyunin V., “Sharp results in the integral-form John–Nirenberg inequality”, Trans. Amer. Math. Soc., 363:8 (2011), 4135–4169 | DOI | MR | Zbl

[10] Slavin L., Vasyunin V., “Sharp $L^p$ estimates on $\mathrm{BMO}$”, Indiana Univ. Math. J., 61:3 (2012), 1051–1110 | DOI | MR | Zbl

[11] Stolyarov D., Zatitskiy P., “Theory of locally concave functions and its applications to sharp estimates of integral functionals”, Adv. Math., 291 (2016), 228–273 | DOI | MR | Zbl

[12] Vasyunin V., Volberg A., “Sharp constants in the classical weak form of the John–Nirenberg inequality”, Proc. Lond. Math. Soc. (3), 108:6 (2014), 1417–1434 | DOI | MR | Zbl