Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_2_a3, author = {V. Vasyunin and L. Slavin}, title = {The {John--Nirenberg} constant of $\mathrm{BMO}^p$, $p>2$}, journal = {Algebra i analiz}, pages = {72--96}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_2_a3/} }
V. Vasyunin; L. Slavin. The John--Nirenberg constant of $\mathrm{BMO}^p$, $p>2$. Algebra i analiz, Tome 28 (2016) no. 2, pp. 72-96. http://geodesic.mathdoc.fr/item/AA_2016_28_2_a3/
[1] Garnett J., Jones P., “The distance in $\mathrm{BMO}$ to $L^\infty$”, Ann. of Math. (2), 108:2 (1978), 373–393 | DOI | MR | Zbl
[2] Ivanishvili P., Osipov N., Stolyarov D., Vasyunin V., Zatitskiy P., “On Bellman function for extremal problems in $\mathrm{BMO}$”, C. R. Math. Acad. Sci. Paris, 350:11–12 (2012), 561–564 | DOI | MR | Zbl
[3] Ivanishvili P., Osipov N., Stolyarov D., Vasyunin V., Zatitskiy P., “Bellman function for extremal problems in $\mathrm{BMO}$”, Trans. Amer. Math. Soc., 368:5 (2016), 3415–3468 | DOI | MR
[4] Ivanishvili P., Osipov N., Stolyarov D., Vasyunin V., Zatitskiy P., “Sharp estimates of integral functionals on classes of functions with small mean oscillation”, C. R. Math. Acad. Sci. Paris, 353:12 (2015), 1081–1085 | DOI | MR
[5] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl
[6] Korenovskii A. A., “O svyazi mezhdu srednimi kolebaniyami i tochnymi pokazatelyami summiruemosti funktsii”, Mat. sb., 181:12 (1990), 1721–1727 | MR | Zbl
[7] Lerner A., “The John–Nirenberg inequality with sharp constants”, C. R. Math. Acad. Sci. Paris, 351:11–12 (2013), 463–466 | DOI | MR | Zbl
[8] Slavin L., The John–Nirenberg constant of $\mathrm{BMO}^p$, $1\le p\le2$, (submitted), arXiv: 1506.04969
[9] Slavin L., Vasyunin V., “Sharp results in the integral-form John–Nirenberg inequality”, Trans. Amer. Math. Soc., 363:8 (2011), 4135–4169 | DOI | MR | Zbl
[10] Slavin L., Vasyunin V., “Sharp $L^p$ estimates on $\mathrm{BMO}$”, Indiana Univ. Math. J., 61:3 (2012), 1051–1110 | DOI | MR | Zbl
[11] Stolyarov D., Zatitskiy P., “Theory of locally concave functions and its applications to sharp estimates of integral functionals”, Adv. Math., 291 (2016), 228–273 | DOI | MR | Zbl
[12] Vasyunin V., Volberg A., “Sharp constants in the classical weak form of the John–Nirenberg inequality”, Proc. Lond. Math. Soc. (3), 108:6 (2014), 1417–1434 | DOI | MR | Zbl