Discrete spectrum of x-shaped waveguide
Algebra i analiz, Tome 28 (2016) no. 2, pp. 58-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2016_28_2_a2,
     author = {F. L. Bakharev and S. G. Matveenko and S. A. Nazarov},
     title = {Discrete spectrum of x-shaped waveguide},
     journal = {Algebra i analiz},
     pages = {58--71},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_2_a2/}
}
TY  - JOUR
AU  - F. L. Bakharev
AU  - S. G. Matveenko
AU  - S. A. Nazarov
TI  - Discrete spectrum of x-shaped waveguide
JO  - Algebra i analiz
PY  - 2016
SP  - 58
EP  - 71
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_2_a2/
LA  - ru
ID  - AA_2016_28_2_a2
ER  - 
%0 Journal Article
%A F. L. Bakharev
%A S. G. Matveenko
%A S. A. Nazarov
%T Discrete spectrum of x-shaped waveguide
%J Algebra i analiz
%D 2016
%P 58-71
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_2_a2/
%G ru
%F AA_2016_28_2_a2
F. L. Bakharev; S. G. Matveenko; S. A. Nazarov. Discrete spectrum of x-shaped waveguide. Algebra i analiz, Tome 28 (2016) no. 2, pp. 58-71. http://geodesic.mathdoc.fr/item/AA_2016_28_2_a2/

[1] Kuchment P., “Graph models for waves in thin structures”, Waves Random Media, 12:4 (2002), R1–R24 | DOI | MR | Zbl

[2] Kuchment P. (Ed.), Quantum graphs and their applications a special issue of Waves, Random Media, 14, no. 1, 2004 | MR

[3] Pauling L., “The diamagnetic anisotropy of aromatic molecules”, J. Chem. Phys., 4 (1936), 672–678

[4] Kuchment P., Zeng H., “Asymptotics of spectra of Neumann Laplacians in thin domains”, Advances in Differential Equations and Mathematical Physics, Contemp. Math., 387, Amer. Math. Soc., Providence, RI, 2003, 199–213 | DOI | MR

[5] Exner P., Post O., “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl

[6] Grieser D., “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl

[7] Nazarov S. A., “Lokalizovannye volny v $T$-obraznom volnovode”, Akustich. zh., 56:6 (2010), 747–758

[8] Nazarov S. A., “Ogranichennye resheniya v $T$-obraznom volnovode i spektralnye svoistva lestnitsy Dirikhle”, Zh. vychisl. mat. i mat. fiz., 54:8 (2014), 1299–1318 | DOI | MR | Zbl

[9] Nazarov S. A., “Asimptotika sobstvennykh znachenii zadachi Dirikhle na skoshennom $T$-obraznom volnovode”, Zh. vychisl. mat. i mat. fiz., 54:5 (2014), 793–814 | DOI | MR | Zbl

[10] Nazarov S. A., “Stroenie spektra reshetki kvantovykh volnovodov i ogranichennye resheniya modelnoi zadachi na poroge”, Dokl. RAN, 458:6 (2014), 636–640 | DOI | MR | Zbl

[11] Nazarov S. A., “Diskretnyi spektr krestoobraznykh kvantovykh volnovodov”, Probl. mat. anal., 73, Novosibirsk, 2013, 101–127

[12] Nazarov S. A., Ruotsalainen K., Uusitalo P., “The $Y$-junction of quantum waveguides”, ZAMM Z. Angew. Math. Mech., 94:6 (2014), 477–486 | DOI | MR | Zbl

[13] Nazarov S. A., Ruotsalainen K., Uusitalo P., “Asymptotics of the spectrum of the Dirichlet Laplacian on a thin carbon nano-structure”, C. R. Mecanique, 343 (2015), 360–364 | DOI

[14] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR

[15] Kamotskii I. V., Nazarov S. A., “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi reshetke”, Mat. zametki, 73:1 (2003), 138–140 | DOI | MR | Zbl

[16] Leis R., Initial boundary value problems of mathematical physics, Teubner, Stuttgart, 1986 | MR

[17] Osmolovskii V. G., Nelineinaya zadacha Shturma–Liuvillya, Izd-vo SPb. un-ta, SPb., 2003

[18] Pólya G., Szegö G., Isoperimetric inequalities in mathematical physics, Amer. Math. Stud., 27, Princeton Univ. Press, Princeton, N.J., 1951 | MR | Zbl