Domain perturbations for elliptic problems with Robin boundary conditions of opposite sign
Algebra i analiz, Tome 28 (2016) no. 2, pp. 34-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The energy of the torsion problem with Robin boundary conditions is considered in the case where the solution is not a minimizer. Its dependence on the volume of the domain and the surface area of the boundary is discussed. In contrast to the case of positive elasticity constants, the ball does not provide a minimum. For nearly spherical domains and elasticity constants close to zero the energy is the largest for the ball. This result is true for general domains in the plane under an additional condition on the first nontrivial Steklov eigenvalue. For more negative elasticity constants the situation is more involved and is strongly related to the particular domain perturbation. The methods used in this paper are the series representation of the solution in terms of Steklov eigenfunctions, the first and second shape derivatives and an isoperimetric inequality of Payne and Weinberger for the torsional rigidity.
Keywords: Robin boundary condition, energy representation, Steklov eigenfunction, extremal domain, first and second domain variation, optimality conditions.
@article{AA_2016_28_2_a1,
     author = {C. Bandle and A. Wagner},
     title = {Domain perturbations for elliptic problems with {Robin} boundary conditions of opposite sign},
     journal = {Algebra i analiz},
     pages = {34--57},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_2_a1/}
}
TY  - JOUR
AU  - C. Bandle
AU  - A. Wagner
TI  - Domain perturbations for elliptic problems with Robin boundary conditions of opposite sign
JO  - Algebra i analiz
PY  - 2016
SP  - 34
EP  - 57
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_2_a1/
LA  - en
ID  - AA_2016_28_2_a1
ER  - 
%0 Journal Article
%A C. Bandle
%A A. Wagner
%T Domain perturbations for elliptic problems with Robin boundary conditions of opposite sign
%J Algebra i analiz
%D 2016
%P 34-57
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_2_a1/
%G en
%F AA_2016_28_2_a1
C. Bandle; A. Wagner. Domain perturbations for elliptic problems with Robin boundary conditions of opposite sign. Algebra i analiz, Tome 28 (2016) no. 2, pp. 34-57. http://geodesic.mathdoc.fr/item/AA_2016_28_2_a1/

[1] Auchmuty G., “Steklov eigenproblems and the representation of solutions of elliptic boundary value problems”, Numer. Funct. Anal. Optim., 25:3–4 (2004), 321–348 | MR | Zbl

[2] Auchmuty G., “Sharp boundary trace inequalities”, Proc. Roy. Soc. Edinburgh Sect. A, 144:1 (2014), 1–12 | DOI | MR | Zbl

[3] Bandle C., Wagner A., “Second variation of domain functionals and applications to problems with Robin boundary conditions”, J. Optim. Theory Appl., 167:2 (2015), 430–463 | DOI | MR | Zbl

[4] Bandle C., Wagner A., “Isoperimetric inequalities for the principal eigenvalue of a membrane and the energy of problems with Robin boundary conditions”, J. Convex Anal., 22:3 (2015), 627–640 | MR | Zbl

[5] Bareket M., “On an isoperimetric inequality for the first eigenvalue of a boundary value problem”, SIAM J. Math. Anal., 8:2 (1977), 280–287 | DOI | MR | Zbl

[6] Brock F., “An isoperimetric inequality for eigenvalues of the Stekloff problem”, ZAMM Z. Angew. Math. Mech., 81:1 (2001), 69–71 | MR | Zbl

[7] Bucur D., Giacomini A., “Faber–Krahn inequalities for the Robin–Laplacian: a free discontinuity approach”, Arch. Ration. Mech. Anal., 218:2 (2015), 757–824 | DOI | MR | Zbl

[8] Clément Ph., Peletier L. A., “An anti-maximum principle for second-order elliptic operators”, J. Differential Equations, 34:2 (1979), 218–229 | DOI | MR

[9] Courant R., Hilbert D., Methods of mathematical physics, v. I, Intersci. Publ., New York, 1953 | MR | Zbl

[10] Dancer E. N., Daners D., “Domain perturbations for elllptic equations subject to Robin boundary conditions”, J. Differential Equations, 138:1 (1997), 86–132 | DOI | MR | Zbl

[11] Ferone V., Nitsch C., Trombetti C., On a conjectured reverse Faber–Krahn inequality for a Steklov-type Laplacian eigenvalue, 2014, arXiv: 1307.3788

[12] Freitas P., Krejcirik D., The first Robin eigenvalue with a negative boundary parameter, Preprint, arXiv: 1403.6666

[13] Gilbarg G., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl

[14] Kato T., Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966 | MR | Zbl

[15] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR

[16] Payne L. E., Weinberger H. F., “Some isoperimetric inequalities for membrane frequencies and torsional rigidity”, J. Math. Anal. Appl., 2 (1961), 210–216 | DOI | MR | Zbl

[17] Schaefer P. W., Sperb R. P., “Maximum principles for some functionals of elliptic boundary value problems”, Arch. Rational Mech. Anal., 61:1 (1976), 65–76 | DOI | MR | Zbl

[18] Serrin J., “A symmetry problem in potential theory”, Arch. Rational Mech. Anal., 43 (1971), 304–318 | DOI | MR | Zbl

[19] Weinstock R., “Inequalities for a classical eigenvalue problem”, J. Rational Mech. Anal., 3 (1954), 745–753 | MR | Zbl