Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_2_a1, author = {C. Bandle and A. Wagner}, title = {Domain perturbations for elliptic problems with {Robin} boundary conditions of opposite sign}, journal = {Algebra i analiz}, pages = {34--57}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_2_a1/} }
C. Bandle; A. Wagner. Domain perturbations for elliptic problems with Robin boundary conditions of opposite sign. Algebra i analiz, Tome 28 (2016) no. 2, pp. 34-57. http://geodesic.mathdoc.fr/item/AA_2016_28_2_a1/
[1] Auchmuty G., “Steklov eigenproblems and the representation of solutions of elliptic boundary value problems”, Numer. Funct. Anal. Optim., 25:3–4 (2004), 321–348 | MR | Zbl
[2] Auchmuty G., “Sharp boundary trace inequalities”, Proc. Roy. Soc. Edinburgh Sect. A, 144:1 (2014), 1–12 | DOI | MR | Zbl
[3] Bandle C., Wagner A., “Second variation of domain functionals and applications to problems with Robin boundary conditions”, J. Optim. Theory Appl., 167:2 (2015), 430–463 | DOI | MR | Zbl
[4] Bandle C., Wagner A., “Isoperimetric inequalities for the principal eigenvalue of a membrane and the energy of problems with Robin boundary conditions”, J. Convex Anal., 22:3 (2015), 627–640 | MR | Zbl
[5] Bareket M., “On an isoperimetric inequality for the first eigenvalue of a boundary value problem”, SIAM J. Math. Anal., 8:2 (1977), 280–287 | DOI | MR | Zbl
[6] Brock F., “An isoperimetric inequality for eigenvalues of the Stekloff problem”, ZAMM Z. Angew. Math. Mech., 81:1 (2001), 69–71 | MR | Zbl
[7] Bucur D., Giacomini A., “Faber–Krahn inequalities for the Robin–Laplacian: a free discontinuity approach”, Arch. Ration. Mech. Anal., 218:2 (2015), 757–824 | DOI | MR | Zbl
[8] Clément Ph., Peletier L. A., “An anti-maximum principle for second-order elliptic operators”, J. Differential Equations, 34:2 (1979), 218–229 | DOI | MR
[9] Courant R., Hilbert D., Methods of mathematical physics, v. I, Intersci. Publ., New York, 1953 | MR | Zbl
[10] Dancer E. N., Daners D., “Domain perturbations for elllptic equations subject to Robin boundary conditions”, J. Differential Equations, 138:1 (1997), 86–132 | DOI | MR | Zbl
[11] Ferone V., Nitsch C., Trombetti C., On a conjectured reverse Faber–Krahn inequality for a Steklov-type Laplacian eigenvalue, 2014, arXiv: 1307.3788
[12] Freitas P., Krejcirik D., The first Robin eigenvalue with a negative boundary parameter, Preprint, arXiv: 1403.6666
[13] Gilbarg G., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl
[14] Kato T., Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966 | MR | Zbl
[15] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR
[16] Payne L. E., Weinberger H. F., “Some isoperimetric inequalities for membrane frequencies and torsional rigidity”, J. Math. Anal. Appl., 2 (1961), 210–216 | DOI | MR | Zbl
[17] Schaefer P. W., Sperb R. P., “Maximum principles for some functionals of elliptic boundary value problems”, Arch. Rational Mech. Anal., 61:1 (1976), 65–76 | DOI | MR | Zbl
[18] Serrin J., “A symmetry problem in potential theory”, Arch. Rational Mech. Anal., 43 (1971), 304–318 | DOI | MR | Zbl
[19] Weinstock R., “Inequalities for a classical eigenvalue problem”, J. Rational Mech. Anal., 3 (1954), 745–753 | MR | Zbl