Decomposition of transvections: an algebro-geometric approach
Algebra i analiz, Tome 28 (2016) no. 1, pp. 150-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2016_28_1_a4,
     author = {V. A. Petrov},
     title = {Decomposition of transvections: an algebro-geometric approach},
     journal = {Algebra i analiz},
     pages = {150--157},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_1_a4/}
}
TY  - JOUR
AU  - V. A. Petrov
TI  - Decomposition of transvections: an algebro-geometric approach
JO  - Algebra i analiz
PY  - 2016
SP  - 150
EP  - 157
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_1_a4/
LA  - ru
ID  - AA_2016_28_1_a4
ER  - 
%0 Journal Article
%A V. A. Petrov
%T Decomposition of transvections: an algebro-geometric approach
%J Algebra i analiz
%D 2016
%P 150-157
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_1_a4/
%G ru
%F AA_2016_28_1_a4
V. A. Petrov. Decomposition of transvections: an algebro-geometric approach. Algebra i analiz, Tome 28 (2016) no. 1, pp. 150-157. http://geodesic.mathdoc.fr/item/AA_2016_28_1_a4/

[1] Brosnan P., “On motivic decompositions arising from the method of Białynicki–Birula”, Invent. Math., 161:1 (2005), 91–111 | DOI | MR | Zbl

[2] Chernousov V., Gille S., Merkurjev A., “Motivic decomposition of isotropic projective homogeneous varieties”, Duke Math. J., 126:1 (2005), 137–159 | DOI | MR | Zbl

[3] Stepanov A., Vavilov N., “Decomposition of transvections: a theme with variations”, K-theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[4] Vavilov N., “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[5] Vavilov N. A., “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl

[6] Vavilov N. A., “Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: $25$ years after”, Zap. nauch. semin. POMI, 430, 2014, 32–52

[7] Vavilov N. A., Plotkin E. B., “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–115 | DOI | MR

[8] Vavilov N. A., Gavrilovich M. R., “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$”, Algebra i analiz, 16:4 (2004), 54–87 | MR | Zbl

[9] Vavilov N. A., Gavrilovich M. R., Nikolenko S. I., “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauch. semin. POMI, 330, 2006, 36–76 | MR | Zbl

[10] Vavilov N. A., Kazakevich V. G., “Razlozhenie transvektsii dlya avtomorfizmov”, Zap. nauch. semin. POMI, 365, 2009, 47–62 | MR | Zbl

[11] Vavilov N. A., Kazakevich V. G., “Esche neskolko variatsii na temu razlozheniya transvektsii”, Zap. nauch. semin. POMI, 375, 2010, 32–47 | MR | Zbl

[12] Vavilov N. A., Stavrova A. K., “Osnovnye reduktsii v zadache opisaniya normalnykh podgrupp”, Zap. nauch. semin. POMI, 349, 2007, 30–52