Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_6_a6, author = {C. Greither and M. Kurihara}, title = {Tate sequences and {Fitting} ideals of {Iwasawa} modules}, journal = {Algebra i analiz}, pages = {117--149}, publisher = {mathdoc}, volume = {27}, number = {6}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_6_a6/} }
C. Greither; M. Kurihara. Tate sequences and Fitting ideals of Iwasawa modules. Algebra i analiz, Tome 27 (2015) no. 6, pp. 117-149. http://geodesic.mathdoc.fr/item/AA_2015_27_6_a6/
[1] Cornacchia P., Greither C., “Fitting ideals of class groups of real fields with prime power conductor”, J. Number Theory, 73:2 (1998), 459–471 | DOI | MR | Zbl
[2] Greither C., “Computing Fitting ideals of Iwasawa modules”, Math. Z., 246:4 (2004), 733–767 | DOI | MR | Zbl
[3] Greither C., “Determining Fitting ideals of minus class groups via the equivariant Tamagawa number conjecture”, Compos. Math., 143:6 (2007), 1399–1426 | DOI | MR | Zbl
[4] Greither C., Kurihara M., “Stickelberger elements, Fitting ideals of class groups of CM fields, and dualisation”, Math. Z., 260:4 (2008), 905–930 | DOI | MR | Zbl
[5] Kurihara M., “Iwasawa theory and Fitting ideals”, J. Reine Angew. Math., 561 (2003), 39–86 | MR | Zbl
[6] Kurihara M., “On the structure of ideal class groups of CM fields”, Doc. Math., 2003, Extra vol., 539–563 | MR | Zbl
[7] Kurihara M., “On stronger versions of Brumer's conjecture”, Tokyo J. Math., 34:2 (2011), 407–428 | DOI | MR | Zbl
[8] Kurihara M., Miura T., “Stickelberger ideals and Fitting ideals of class groups for abelian number fields”, Math. Ann., 350:3 (2011), 549–575 | DOI | MR | Zbl
[9] Kurihara M., Miura T., “Ideal class groups of CM-fields with non-cyclic Galois action”, Tokyo J. Math., 35:2 (2012), 411–439 | DOI | MR | Zbl
[10] Mazur B., Wiles A., “Class fields of abelian extensions of $\mathbb Q$”, Invent. Math., 76:2 (1984), 179-330 | DOI | MR | Zbl
[11] Wiles A., “The Iwasawa conjecture for totally real fields”, Ann. of Math. (2), 131:3 (1990), 493–540 | DOI | MR | Zbl