Tate sequences and Fitting ideals of Iwasawa modules
Algebra i analiz, Tome 27 (2015) no. 6, pp. 117-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Abelian CM extensions $L/k$ of a totally real field $k$, and we essentially determine the Fitting ideal of the dualized Iwasawa module studied by the second author in the case where only places above $p$ ramify. In doing so we recover and generalize the results mentioned above. Remarkably, our explicit description of the Fitting ideal, apart from the contribution of the usual Stickelberger element $\dot\Theta$ at infinity, only depends on the group structure of the Galois group $\operatorname{Gal}(L/k)$ and not on the specific extension $L$. From our computation it is then easy to deduce that $\dot T\dot\Theta$ is not in the Fitting ideal as soon as the $p$-part of $\operatorname{Gal}(L/k)$ is not cyclic. We need a lot of technical preparations: resolutions of the trivial module $\mathbb Z$ over a group ring, discussion of the minors of certain big matrices that arise in this context, and auxiliary results about the behavior of Fitting ideals in short exact sequences.
Keywords: Tate sequences, class groups, cohomology, totally real fields, CM-fields.
@article{AA_2015_27_6_a6,
     author = {C. Greither and M. Kurihara},
     title = {Tate sequences and {Fitting} ideals of {Iwasawa} modules},
     journal = {Algebra i analiz},
     pages = {117--149},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_6_a6/}
}
TY  - JOUR
AU  - C. Greither
AU  - M. Kurihara
TI  - Tate sequences and Fitting ideals of Iwasawa modules
JO  - Algebra i analiz
PY  - 2015
SP  - 117
EP  - 149
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_6_a6/
LA  - en
ID  - AA_2015_27_6_a6
ER  - 
%0 Journal Article
%A C. Greither
%A M. Kurihara
%T Tate sequences and Fitting ideals of Iwasawa modules
%J Algebra i analiz
%D 2015
%P 117-149
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_6_a6/
%G en
%F AA_2015_27_6_a6
C. Greither; M. Kurihara. Tate sequences and Fitting ideals of Iwasawa modules. Algebra i analiz, Tome 27 (2015) no. 6, pp. 117-149. http://geodesic.mathdoc.fr/item/AA_2015_27_6_a6/

[1] Cornacchia P., Greither C., “Fitting ideals of class groups of real fields with prime power conductor”, J. Number Theory, 73:2 (1998), 459–471 | DOI | MR | Zbl

[2] Greither C., “Computing Fitting ideals of Iwasawa modules”, Math. Z., 246:4 (2004), 733–767 | DOI | MR | Zbl

[3] Greither C., “Determining Fitting ideals of minus class groups via the equivariant Tamagawa number conjecture”, Compos. Math., 143:6 (2007), 1399–1426 | DOI | MR | Zbl

[4] Greither C., Kurihara M., “Stickelberger elements, Fitting ideals of class groups of CM fields, and dualisation”, Math. Z., 260:4 (2008), 905–930 | DOI | MR | Zbl

[5] Kurihara M., “Iwasawa theory and Fitting ideals”, J. Reine Angew. Math., 561 (2003), 39–86 | MR | Zbl

[6] Kurihara M., “On the structure of ideal class groups of CM fields”, Doc. Math., 2003, Extra vol., 539–563 | MR | Zbl

[7] Kurihara M., “On stronger versions of Brumer's conjecture”, Tokyo J. Math., 34:2 (2011), 407–428 | DOI | MR | Zbl

[8] Kurihara M., Miura T., “Stickelberger ideals and Fitting ideals of class groups for abelian number fields”, Math. Ann., 350:3 (2011), 549–575 | DOI | MR | Zbl

[9] Kurihara M., Miura T., “Ideal class groups of CM-fields with non-cyclic Galois action”, Tokyo J. Math., 35:2 (2012), 411–439 | DOI | MR | Zbl

[10] Mazur B., Wiles A., “Class fields of abelian extensions of $\mathbb Q$”, Invent. Math., 76:2 (1984), 179-330 | DOI | MR | Zbl

[11] Wiles A., “The Iwasawa conjecture for totally real fields”, Ann. of Math. (2), 131:3 (1990), 493–540 | DOI | MR | Zbl