Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_6_a11, author = {I. Panin and K. Pimenov}, title = {Rationally isotropic quadratic spaces are locally {isotropic.~III}}, journal = {Algebra i analiz}, pages = {234--241}, publisher = {mathdoc}, volume = {27}, number = {6}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_6_a11/} }
I. Panin; K. Pimenov. Rationally isotropic quadratic spaces are locally isotropic.~III. Algebra i analiz, Tome 27 (2015) no. 6, pp. 234-241. http://geodesic.mathdoc.fr/item/AA_2015_27_6_a11/
[1] Elman R., Karpenko N., Merkurjev A., The algebraic and geometric theory of quadratic forms, Amer. Math. Soc. Publ., 56, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[2] Knus M. A., Quadratic and hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[3] Ojanguren M., Panin I. A., “A purity theorem for the Witt group”, Ann. Sci. Ecole Norm. Sup. (4), 32:1 (1999), 71–86 | MR | Zbl
[4] Panin I., Rehmann U., “A variant of a Theorem by Springer”, Algebra i analiz, 19:6 (2007), 117–125 www.math.uiuc.edu/K-theory/0670 | MR | Zbl
[5] Panin I., “Rationally isotropic quadratic spaces are locally isotropic”, Invent. Math., 176:2 (2009), 397–403 | DOI | MR | Zbl
[6] Panin I., Pimenov K., “Rationally isotropic quadratic spaces are locally isotropic. II”, Doc. Math., 2010, Extra Vol.: Andrei A. Suslin's sixtieth birthday, 515–523 | MR | Zbl
[7] Panin I., Stavrova A., Vavilov N., “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes. I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl