Zeta integrals on arithmetic surfaces
Algebra i analiz, Tome 27 (2015) no. 6, pp. 199-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a (smooth, projective, geometrically connected) curve over a number field, one expects its Hasse–Weil $L$-function, a priori defined only on a right half-plane, to admit meromorphic continuation to $\mathbb C$ and satisfy a simple functional equation. Aside from exceptional circumstances, these analytic properties remain largely conjectural. One may formulate these conjectures in terms of zeta functions of two-dimensional arithmetic schemes, on which one has non-locally compact “analytic” adelic structures admitting a form of “lifted” harmonic analysis first defined by Fesenko for elliptic curves. In this paper we generalize his global results to certain curves of arbitrary genus by invoking a renormalizing factor which may be interpreted as the zeta function of a relative projective line. We are lead to a new interpretation of the “gamma factor” (defined in terms of the Hodge structures at archimedean places) and an (two-dimensional) adelic interpretation of the “mean-periodicity correspondence”, which is comparable to the conjectural automorphicity of Hasse–Weil $L$-functions.
Keywords: scheme of finite type, zeta function, local field, Hasse–Weil $L$-function, complete discrete valuation field, adeles.
@article{AA_2015_27_6_a10,
     author = {T. Oliver},
     title = {Zeta integrals on arithmetic surfaces},
     journal = {Algebra i analiz},
     pages = {199--233},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_6_a10/}
}
TY  - JOUR
AU  - T. Oliver
TI  - Zeta integrals on arithmetic surfaces
JO  - Algebra i analiz
PY  - 2015
SP  - 199
EP  - 233
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_6_a10/
LA  - en
ID  - AA_2015_27_6_a10
ER  - 
%0 Journal Article
%A T. Oliver
%T Zeta integrals on arithmetic surfaces
%J Algebra i analiz
%D 2015
%P 199-233
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_6_a10/
%G en
%F AA_2015_27_6_a10
T. Oliver. Zeta integrals on arithmetic surfaces. Algebra i analiz, Tome 27 (2015) no. 6, pp. 199-233. http://geodesic.mathdoc.fr/item/AA_2015_27_6_a10/

[1] Beilinson A. A., “Vychety i adeli”, Funkts. anal. i ego pril., 14:1 (1980), 37–43 | MR | Zbl

[2] Bloch S., “de Rham cohomology and conductors of curves”, Duke Math. J., 54:2 (1987), 295–308 | DOI | MR | Zbl

[3] Bourbaki N., Elements of Mathematics. General Topology, Pt. I, II, Hermann, Paris, 1966

[4] Brouw I. I., Wewers S., Computing $L$-functions and semistable reduction of superelliptic curves, 2012, arXiv: 1211.4459v1

[5] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75–109 | DOI | MR | Zbl

[6] Fesenko I., Ricotta G., Suzuki M., “Mean-periodicity and zeta functions”, Ann. L'Inst. Fourier (Grenoble), 12:5 (2012), 1819–1887 | DOI | MR

[7] Fesenko I. B., “Analysis on arithmetic schemes. I”, Doc. Math., 2003, Extra vol., 261–284 | MR | Zbl

[8] Fesenko I. B., “Mera. integrirovanie i elementy garmonicheskogo analiza na obobschennykh prostranstvakh petel”, Tr. S.-Peterburg. mat. o-va, 12, 2006, 179–199

[9] Fesenko I. B., “Adelic approach to the zeta function of arithmetic schemes in dimension two”, Moscow Math. J., 8:2 (2008), 273–317 | MR | Zbl

[10] Fesenko I. B., “Analysis on arithmetic schemes. II”, J. $K$-theory, 5:3 (2010), 437–557 | MR | Zbl

[11] Fesenko I. B., Geometric adeles and the Riemann–Roch theorem for $1$-cycles on surfaces, Preprint 2012-36, Max Planck Inst. Math., Bonn

[12] Fesenko I. B., Kurihara M. (eds.), Invitation to higher local fields, Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000 | DOI | MR | Zbl

[13] Fesenko I. B., Vostokov S. V., Local fields and their extensions, 2nd ed., Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[14] Hrushovski E., Kazhdan D., “Integration in valued fields”, Progr. Math., 253, Birkhäuser, Boston, 2006, 261–405 | DOI | MR | Zbl

[15] Huber A., “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR | Zbl

[16] Kim H. H., Lee K.-H., “Spherical Hecke algebras of $SL2$ over $2$-dimensional local fields”, Amer. J. Math., 126:6 (2004), 1381–1399 | DOI | MR | Zbl

[17] Liu Q., Algebraic geometry and arithmetic curves, Oxford Grad. Texts Math., 6, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[18] Meyer R., “On a representation of the idele class group related to primes and zeros of $L$-functions”, Duke Math. J., 127:3 (2005), 519–595 | DOI | MR | Zbl

[19] Morrow M. T., Fubini's theorem and non-linear change of variables over a two-dimensional local field, 2007, arXiv: 0712.2177v3

[20] Morrow M. T., “Integration on valuation fields over local fields”, Tokyo J. Math., 33:1 (2010), 235–281 | DOI | MR | Zbl

[21] Morrow M. T., An introduction to higher dimensional local fields and adeles, 2012, arXiv: 1204.0586

[22] Oliver T. D., Automorphicity and mean-periodicity, 2013, arXiv: 1307.6706

[23] Parshin A. N., “K arifmetike dvumernykh skhem. I. Raspredeleniya i vychety”, Izv. AN SSSR. Ser. mat., 40:4 (1976), 736–773 | MR | Zbl

[24] Parshin A. N., “Chern classes, adeles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | MR | Zbl

[25] Saito T., “Conductor, discriminant, and the Noether formula of arithmetic surfaces”, Duke Math. J., 57:1 (1988), 151–173 | DOI | MR | Zbl

[26] Serre J. P., “Zeta and $L$-Functions”, Arithmetical Algebraic Geometry, Proc. Conf. (Purdue Univ., 1963), Harper Row, New York, 1963, 82–92 | MR

[27] Suzuki M., “Two dimensional adelic analysis and cuspidal automorphic representations of $GL(2)$”, Multiple Dirichlet Series, $L$-functions and Automorphic Forms, Progr. Math., 300, Birkhäuser, New York, 2012, 339–361 | MR | Zbl

[28] Tate J., Fourier analysis in number fields and Hecke's zeta functions, PhD thesis, Princeton Univ., 1950 | MR

[29] Weil A., “Fonction zeta et distributions”, Seminaire Bourbaki, v. 9, Exp. No. 312, Soc. Math. France, Pasis, 523–531 | MR

[30] Weil A., Basic number theory, Grundlehren Math. Wiss., 144, Third ed., Springer-Verlag, New York, 1974 | MR | Zbl