On $m$-commuting mappings with skew derivations in prime rings
Algebra i analiz, Tome 27 (2015) no. 4, pp. 74-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $m,k$ be two fixed positive integers, $R$ a prime ring with the Martindale qoutient ring $Q$, $L$ a noncommutative Lie ideal of $R$, and $\delta$ a skew derivation of $R$ associated with an automorphism $\varphi$, denoted by $(\delta,\varphi)$. If $[\delta(x),x^m]_k=0$ for all $x\in L$, then $char(R)=2$ and $R\subseteq M_2(F)$ for some field $F$.
Keywords: skew derivations, automorphism, generalized polynomial identity (GPI), prime ring, Lie ideal.
@article{AA_2015_27_4_a5,
     author = {N. Rehman and M. Arif Raza},
     title = {On $m$-commuting mappings with skew derivations in prime rings},
     journal = {Algebra i analiz},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_4_a5/}
}
TY  - JOUR
AU  - N. Rehman
AU  - M. Arif Raza
TI  - On $m$-commuting mappings with skew derivations in prime rings
JO  - Algebra i analiz
PY  - 2015
SP  - 74
EP  - 86
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_4_a5/
LA  - ru
ID  - AA_2015_27_4_a5
ER  - 
%0 Journal Article
%A N. Rehman
%A M. Arif Raza
%T On $m$-commuting mappings with skew derivations in prime rings
%J Algebra i analiz
%D 2015
%P 74-86
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_4_a5/
%G ru
%F AA_2015_27_4_a5
N. Rehman; M. Arif Raza. On $m$-commuting mappings with skew derivations in prime rings. Algebra i analiz, Tome 27 (2015) no. 4, pp. 74-86. http://geodesic.mathdoc.fr/item/AA_2015_27_4_a5/

[1] Fos̆ner A., Rehman N., “Identities with additive mappings in semiprime rings”, Bull. Korean Math. Soc., 51:1 (2014), 207–211 | DOI | MR

[2] Beidar K. I., Martindale W. S. III, Mikhalev A. V., Rings with generalized identities, Monogr. Textbook Pure Appl. Math., 196, Marcel Dekker, New York 1996 | MR | Zbl

[3] Bell H. E., Martindale W. S. III, “Centralizing mappings of semiprime rings”, Canad. Math. Bull., 30:1 (1987), 92–101 | DOI | MR | Zbl

[4] Chou M. C., Liu C. K.,, “An Engel condition with skew derivations”, Monatash. Math., 158:3 (2009), 259–270 | DOI | MR | Zbl

[5] Chuang C. L., “GPIs having coefficients in Utumi quotient rings”, Proc. Amer. Math. Soc., 103:3 (1988), 723–728 | DOI | MR | Zbl

[6] Chuang C. L., “Differential identities with automorphisms and antiautomorphisms. I”, J. Algebra, 149:2 (1992), 371–404 | DOI | MR | Zbl

[7] Chuang C. L., “Differential identities with automorphisms and antiautomorphisms. II”, J. Algebra, 160:1 (1993), 130–171 | DOI | MR | Zbl

[8] Chuang C. L., Lee T. K., “Identities with a single skew derivation”, J. Algebra, 288:1 (2005), 59–77 | DOI | MR | Zbl

[9] Chuang C. L., Liu C. K., “Extended Jacobson density theorem for rings with skew derivations”, Comm. Algebra, 35:4 (2007), 1391–1413 | DOI | MR | Zbl

[10] Deng Q., “On $n$-centralizing mappings of prime rings”, Proc. Roy. Irish. Acad. Sect. A, 93:2 (1993), 171–176 | MR | Zbl

[11] Deng Q., Bell H. E., “On derivations and commutativity in semiprime rings”, Comm. Algebra, 23:10 (1995), 3705–3713 | DOI | MR | Zbl

[12] Divinsky N., “On commuting automorphisms of rings”, Trans. Roy. Soc. Canada. Sect. III, 49 (1955), 19–22 | MR | Zbl

[13] Erickson T. S., Martindale W. S. III, Osborn J. M., “Prime nonassociative algebras”, Pacific. J. Math., 60:1 (1975), 49–63 | DOI | MR | Zbl

[14] Herstein I. N., Topics in ring theory, Univ. Chicago Press, Chicago, 1969 | MR | Zbl

[15] Jacobson N., Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964 | MR

[16] Kharchenko V. K., “Obobschennye tozhdestva s avtomorfizmami”, Algebra i logika, 14:2 (1975), 215–237 | MR | Zbl

[17] Lanski C., “Differential identities, Lie ideals, and Posner's theorems”, Pacific J. Math., 134:2 (1988), 275–297 | DOI | MR | Zbl

[18] Lanski C., “An Engel condition with derivation”, Proc. Amer. Math. Soc., 118:3 (1993), 731–734 | DOI | MR | Zbl

[19] Lanski C., “Derivations with nilpotent values of Lie ideals”, Proc. Amer. Math. Soc., 108:1 (1990), 31–37 | DOI | MR | Zbl

[20] Lanski C., “Left ideals and derivations in semiprime rings”, J. Algebra, 277:2 (2004), 658–667 | DOI | MR | Zbl

[21] Lee P. H., Lee T. K., “Lie ideals of prime rings with derivations”, Bull. Inst. Math. Acad. Sinica, 11:1 (1983), 75–80 | MR | Zbl

[22] Lee P. H., Wong T. L., “Derivations cocentralizing Lie ideals”, Bull. Inst. Math. Acad. Sinica, 23:1 (1995), 1–5 | MR | Zbl

[23] Lee P. H., Wong T. L., Lin J. S., Wang R. J., “Commuting traces of multiadditive mappings”, J. Algebra, 193:2 (1997), 709–723 | DOI | MR | Zbl

[24] Lee T. K., “Posner's theorem for $(\sigma,\tau)$-derivations and $\sigma$-centralizing maps”, Houston J. Math., 30:2 (2004), 309–320 | MR | Zbl

[25] Luh J., “A note on commuting automorphisms of rings”, Amer. Math. Monthly, 77 (1970), 61–62 | DOI | MR | Zbl

[26] Mayne J. H., “Centralizing automorphisms of prime rings”, Canad. Math. Bull., 19:1 (1976), 113–115 | DOI | MR | Zbl

[27] Mayne J. H., “Centralizing automorphisms of Lie ideals in prime rings”, Canad. Math. Bull., 35:4 (1992), 510–514 | DOI | MR | Zbl

[28] Posner E. C., “Derivations in prime rings”, Proc. Amer. Math. Soc., 8 (1957), 1093–1100 | DOI | MR

[29] Rekhman N., De Fillips V., “Ob $n$-kommutiruyuschikh i $n$-antikommutiruyuschikh otobrazheniyakh s obobschennymi differentsirovaniyami na pervichnykh i polupervichnykh koltsakh”, Sib. mat. zh., 52:3 (2011), 655–664 | MR