Bessel sequences with finite upper density in the de Branges spaces
Algebra i analiz, Tome 27 (2015) no. 4, pp. 15-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2015_27_4_a1,
     author = {Yu. Belov},
     title = {Bessel sequences with finite upper density in the de {Branges} spaces},
     journal = {Algebra i analiz},
     pages = {15--27},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_4_a1/}
}
TY  - JOUR
AU  - Yu. Belov
TI  - Bessel sequences with finite upper density in the de Branges spaces
JO  - Algebra i analiz
PY  - 2015
SP  - 15
EP  - 27
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_4_a1/
LA  - ru
ID  - AA_2015_27_4_a1
ER  - 
%0 Journal Article
%A Yu. Belov
%T Bessel sequences with finite upper density in the de Branges spaces
%J Algebra i analiz
%D 2015
%P 15-27
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_4_a1/
%G ru
%F AA_2015_27_4_a1
Yu. Belov. Bessel sequences with finite upper density in the de Branges spaces. Algebra i analiz, Tome 27 (2015) no. 4, pp. 15-27. http://geodesic.mathdoc.fr/item/AA_2015_27_4_a1/

[1] Baranov A. D., “Stability of bases and frames of reproducing kernels in model subspaces”, Ann. Inst. Fourier (Grenoble), 55:7 (2005), 2399–2422 | DOI | MR | Zbl

[2] Baranov A. D., Belov Yu., “Systems of reproducing kernels and their biorthogonal: completeness or incompleteness?”, Int. Math. Res. Not. IMRN, 2011:22 (2011), 5076–5108 | MR | Zbl

[3] Baranov A. D., Belov Yu., Borichev A. A., “Hereditary completeness for systems of exponentials and reproducing kernels”, Adv. Math., 235 (2013), 525–554 | DOI | MR | Zbl

[4] Baranov A. D., Belov Yu., Borichev A. A., “Spectral synthesis in de Branges spaces”, Geom. Funct. Anal., 25:2 (2015), 417–452 | DOI | MR | Zbl

[5] Belov Yu., Mengestie T., Seip K., “Unitary discrete Hilbert transforms”, J. Anal. Math., 112 (2010), 383–395 | DOI | MR

[6] Belov Yu., Mengestie T., Seip K., “Discrete Hilbert transforms on sparse sequences”, Proc. London Math. Soc. (3), 103:1 (2011), 73–105 | DOI | MR | Zbl

[7] de Branges L., Hilbert spaces of entire functions, Prentice-Hall, Englewood Cliffs, NJ, 1968 | MR | Zbl

[8] Clark D. N., “One dimensional perturbations of restricted shifts”, J. Anal. Math., 25 (1972), 169–191 | DOI | MR | Zbl

[9] Cohn W., “Carleson measures for functions orthogonal to invariant subspaces”, Pacific J. Math., 103:2 (1982), 347–364 | DOI | MR | Zbl

[10] Lacey M., Sawyer E., Shen C., Uriarte-Tuero I., “Two-weight inequality for the Hilbert transform: A real variable characterization. I”, Duke Math. J., 163:15 (2014), 2795–2820 | DOI | MR | Zbl

[11] Lacey M., “Two-weight inequality for the Hilbert transform: A real variable characterization. II”, Duke Math. J., 163:15 (2014), 2821–2840 | DOI | MR | Zbl

[12] Makarov N., Poltoratski A., “Meromorphic inner functions, Toeplitz kernels and the uncertainty principle”, Perspectives in Analysis, Math. Phys. Stud., 27, Springer, Berlin, 2005, 185–252 | DOI | MR | Zbl

[13] Ortega-Cerdà J., Seip K., “Fourier frames”, Ann. of Math. (2), 155:3 (2002), 789–806 | DOI | MR | Zbl

[14] Poltoratski A., Toeplitz approach to problems of the uncertainty principle, CBMS Reg. Conf. Ser. Math., 121, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl