Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_3_a9, author = {J. F. Rodrigues}, title = {On the free boundary in heterogeneous obstacle-type problems with two phases}, journal = {Algebra i analiz}, pages = {202--219}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a9/} }
J. F. Rodrigues. On the free boundary in heterogeneous obstacle-type problems with two phases. Algebra i analiz, Tome 27 (2015) no. 3, pp. 202-219. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a9/
[1] Andreu F., Igbida N., Mazón J. M., Toledo J., “$L^1$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24:1 (2007), 61–89 | DOI | MR | Zbl
[2] Bénilan Ph., Boccardo L., Gallouët Th., Gariepy R., Pierre M., Vazquez J. L., “An $L^1$-existence theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl
[3] Bénilan P., Crandall M. G., “Completely accretive operators”, Semigroup Theory and Evolution Equations, Lecture Notes Pure Appl., 135, Dekker, New York, 1991, 41–76 | MR
[4] Brézis H., Kinderlehrer D., “The smoothness of solutions to nonlinear variational inequalities”, Indiana Univ. Math. J., 23 (1973–1974), 831–844 | DOI | MR
[5] Brézis H., Strauss W., “Semi-linear second-order elliptic equations in $L^1$”, J. Math. Soc. Japan, 25 (1973), 565–590 | DOI | MR | Zbl
[6] Challal S., Lyaghfouri A., Rodrigues J. F., Teymurazyan R., “On the regularity of the free boundary for quasilinear obstacle problems”, Interfaces Free Bound., 16:3 (2014), 359–395 | DOI | MR
[7] Chang K. C., “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., 33:2 (1980), 117–146 | DOI | MR | Zbl
[8] DiBenedetto E., “$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Anal., 7 (1983), 827–850 | DOI | MR | Zbl
[9] Duvaut G., Lions J.-L., Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR
[10] Evans L., Gariepy R., Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Ration, FL, 1992 | MR | Zbl
[11] Giusti E., Minimal surfaces and functions of bounded variation, Monogr. Math., 80, Birkhäuser, Basel, 1984 | MR | Zbl
[12] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[13] Lieberman G. M., “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., 12:11 (1988), 1203–1219 | DOI | MR | Zbl
[14] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969 | MR
[15] Morrey C. B. (Jr.), Multiple integrals in the calculus of variations, Grundlehren Math. Wiss, 130, Springer-Verlag, New York, 1966 | MR | Zbl
[16] Petrosyan A., Shahgholian H., Uraltseva N. N., Regularity of free boundaries in obstacle-type problems, Grad. Stud. Math., 136, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl
[17] Shahgholian H., Uraltseva N. N., Weiss G., “The two-phase membrane problem-regularity of the free boundaries in higher dimensions”, Int. Math. Res. Not. IMRN, 2007:8 (2007), Art. ID rnm026 | MR
[18] Rodrigues J. F., Obstacle problems in mathematical physics, North-Holland Math. Stud., 134, North-Holland Publ., Amsterdam, 1987 | MR | Zbl
[19] Rodrigues J. F., “Variational methods in the Stefan problem”, Phase Transitions and Hysteresis (Montecatini Terme, 1993), Lecture Notes in Math., 1584, Springer, Berlin, 1994, 147–212 | DOI | MR | Zbl
[20] Rodrigues J. F., “Reaction-diffusion: from systems to nonlocal equations in a class of free boundary problems”, Internat. Conf. Reaction-Diffusion Systems: Theory and Applications (Kyoto, 2001), Surikaisekikenkyūsho Kōkyūroku, 1249, 2002, 72–89 | MR
[21] Rodrigues J. F., “Stability remarks to the obstacle problem for $p$-Laplacian type equations”, Calc. Var. Partial. Differential Equ., 23:1 (2005), 51–65 | DOI | MR | Zbl
[22] Roubic̆ek T., Nonlinear partial differential equations with applications, Intern. Ser. Numerical Math., 153, 2nd ed., Birkäuser, Basel, 2013 | MR | Zbl
[23] Tolksdorff P., “Regularity for a more general class of quasilinear elliptic equations”, J. Differential Equations, 51:1 (1984), 126–150 | DOI | MR
[24] Uraltseva N. N., “Vyrozhdayuschiesya kvazilineinye ellipticheskie sistemy”, Zap. nauch. semin. LOMI, 7, 1968, 184–222 | MR | Zbl
[25] Weiss G., “An obstacle-problem-like equation with two phases: point wise regularity of the solution and an estimate of the Hausdorff dimension of the free boundary”, Interfaces Free Bound., 3:2 (2001), 121–128 | DOI | MR | Zbl
[26] Wittbold P., “Nonlinear diffusion with absortion”, Potential Anal., 7:1 (1997), 437–465 | DOI | MR | Zbl