On the free boundary in heterogeneous obstacle-type problems with two phases
Algebra i analiz, Tome 27 (2015) no. 3, pp. 202-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some properties of the solutions of free boundary problems of obstacle-type with two phases are considered for a class of heterogeneous quasilinear elliptic operators, including the $p$-Laplacian operator with $1$. Under a natural nondegeneracy assumption on the interface, when the level set of the change of phase has null Lebesgue measure, a continuous dependence result is proved for the characteristic functions of each phase and sharp estimates are established on the variation of its Lebesgue measure with respect to the $L^1$-variation of the data, in a rather general framework. For elliptic quasilinear equations whose heterogeneities have appropriate integrable derivatives, it is shown that the characteristic functions of both phases are of bounded variation for the general data with bounded variation. This extends recent results for the obstacle problem and is a first result on the regularity of the free boundary of the heterogeneous two phases problem, which is therefore an interface locally of class $C^1$ up to a possible singular set of null perimeter.
Keywords: free boundary problems, quasilinear elliptic operator, $p$-Laplacian, obstacle problem.
@article{AA_2015_27_3_a9,
     author = {J. F. Rodrigues},
     title = {On the free boundary in heterogeneous obstacle-type problems with two phases},
     journal = {Algebra i analiz},
     pages = {202--219},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a9/}
}
TY  - JOUR
AU  - J. F. Rodrigues
TI  - On the free boundary in heterogeneous obstacle-type problems with two phases
JO  - Algebra i analiz
PY  - 2015
SP  - 202
EP  - 219
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a9/
LA  - en
ID  - AA_2015_27_3_a9
ER  - 
%0 Journal Article
%A J. F. Rodrigues
%T On the free boundary in heterogeneous obstacle-type problems with two phases
%J Algebra i analiz
%D 2015
%P 202-219
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a9/
%G en
%F AA_2015_27_3_a9
J. F. Rodrigues. On the free boundary in heterogeneous obstacle-type problems with two phases. Algebra i analiz, Tome 27 (2015) no. 3, pp. 202-219. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a9/

[1] Andreu F., Igbida N., Mazón J. M., Toledo J., “$L^1$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24:1 (2007), 61–89 | DOI | MR | Zbl

[2] Bénilan Ph., Boccardo L., Gallouët Th., Gariepy R., Pierre M., Vazquez J. L., “An $L^1$-existence theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl

[3] Bénilan P., Crandall M. G., “Completely accretive operators”, Semigroup Theory and Evolution Equations, Lecture Notes Pure Appl., 135, Dekker, New York, 1991, 41–76 | MR

[4] Brézis H., Kinderlehrer D., “The smoothness of solutions to nonlinear variational inequalities”, Indiana Univ. Math. J., 23 (1973–1974), 831–844 | DOI | MR

[5] Brézis H., Strauss W., “Semi-linear second-order elliptic equations in $L^1$”, J. Math. Soc. Japan, 25 (1973), 565–590 | DOI | MR | Zbl

[6] Challal S., Lyaghfouri A., Rodrigues J. F., Teymurazyan R., “On the regularity of the free boundary for quasilinear obstacle problems”, Interfaces Free Bound., 16:3 (2014), 359–395 | DOI | MR

[7] Chang K. C., “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., 33:2 (1980), 117–146 | DOI | MR | Zbl

[8] DiBenedetto E., “$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Anal., 7 (1983), 827–850 | DOI | MR | Zbl

[9] Duvaut G., Lions J.-L., Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR

[10] Evans L., Gariepy R., Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Ration, FL, 1992 | MR | Zbl

[11] Giusti E., Minimal surfaces and functions of bounded variation, Monogr. Math., 80, Birkhäuser, Basel, 1984 | MR | Zbl

[12] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[13] Lieberman G. M., “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., 12:11 (1988), 1203–1219 | DOI | MR | Zbl

[14] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969 | MR

[15] Morrey C. B. (Jr.), Multiple integrals in the calculus of variations, Grundlehren Math. Wiss, 130, Springer-Verlag, New York, 1966 | MR | Zbl

[16] Petrosyan A., Shahgholian H., Uraltseva N. N., Regularity of free boundaries in obstacle-type problems, Grad. Stud. Math., 136, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl

[17] Shahgholian H., Uraltseva N. N., Weiss G., “The two-phase membrane problem-regularity of the free boundaries in higher dimensions”, Int. Math. Res. Not. IMRN, 2007:8 (2007), Art. ID rnm026 | MR

[18] Rodrigues J. F., Obstacle problems in mathematical physics, North-Holland Math. Stud., 134, North-Holland Publ., Amsterdam, 1987 | MR | Zbl

[19] Rodrigues J. F., “Variational methods in the Stefan problem”, Phase Transitions and Hysteresis (Montecatini Terme, 1993), Lecture Notes in Math., 1584, Springer, Berlin, 1994, 147–212 | DOI | MR | Zbl

[20] Rodrigues J. F., “Reaction-diffusion: from systems to nonlocal equations in a class of free boundary problems”, Internat. Conf. Reaction-Diffusion Systems: Theory and Applications (Kyoto, 2001), Surikaisekikenkyūsho Kōkyūroku, 1249, 2002, 72–89 | MR

[21] Rodrigues J. F., “Stability remarks to the obstacle problem for $p$-Laplacian type equations”, Calc. Var. Partial. Differential Equ., 23:1 (2005), 51–65 | DOI | MR | Zbl

[22] Roubic̆ek T., Nonlinear partial differential equations with applications, Intern. Ser. Numerical Math., 153, 2nd ed., Birkäuser, Basel, 2013 | MR | Zbl

[23] Tolksdorff P., “Regularity for a more general class of quasilinear elliptic equations”, J. Differential Equations, 51:1 (1984), 126–150 | DOI | MR

[24] Uraltseva N. N., “Vyrozhdayuschiesya kvazilineinye ellipticheskie sistemy”, Zap. nauch. semin. LOMI, 7, 1968, 184–222 | MR | Zbl

[25] Weiss G., “An obstacle-problem-like equation with two phases: point wise regularity of the solution and an estimate of the Hausdorff dimension of the free boundary”, Interfaces Free Bound., 3:2 (2001), 121–128 | DOI | MR | Zbl

[26] Wittbold P., “Nonlinear diffusion with absortion”, Potential Anal., 7:1 (1997), 437–465 | DOI | MR | Zbl