Contact of a~thin free boundary with a~fixed one in the Signorini problem
Algebra i analiz, Tome 27 (2015) no. 3, pp. 183-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Signorini problem is studied near a fixed boundary where the solution is “clamped down” or “glued”. It is shown that, in general, the solutions are at least $C^{1/2}$ regular and that this regularity is sharp. Near the actual points of contact of the free boundary with the fixed one, the blowup solutions are shown to have homogeneity $\kappa\geq3/2$, while at the noncontact points the homogeneity must take one of the values: $1/2,3/2,\dots,m-1/2,\ldots$
Keywords: Signorini problem, thin obstacle problem, thin free boundary, optimal regularity, contact with fixed boundary, Almgren's frequency formula.
@article{AA_2015_27_3_a8,
     author = {N. Matevosyan and A. Petrosyan},
     title = {Contact of a~thin free boundary with a~fixed one in the {Signorini} problem},
     journal = {Algebra i analiz},
     pages = {183--201},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a8/}
}
TY  - JOUR
AU  - N. Matevosyan
AU  - A. Petrosyan
TI  - Contact of a~thin free boundary with a~fixed one in the Signorini problem
JO  - Algebra i analiz
PY  - 2015
SP  - 183
EP  - 201
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a8/
LA  - en
ID  - AA_2015_27_3_a8
ER  - 
%0 Journal Article
%A N. Matevosyan
%A A. Petrosyan
%T Contact of a~thin free boundary with a~fixed one in the Signorini problem
%J Algebra i analiz
%D 2015
%P 183-201
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a8/
%G en
%F AA_2015_27_3_a8
N. Matevosyan; A. Petrosyan. Contact of a~thin free boundary with a~fixed one in the Signorini problem. Algebra i analiz, Tome 27 (2015) no. 3, pp. 183-201. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a8/

[1] Almgren F. J. (Jr.), Almgren's big regularity paper, $Q$-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, World Sci. Monogr. Ser. Math., 1, World Sci. Publ. Co., Inc., River Edge, NJ, 2000 | MR | Zbl

[2] Apushkinskaya D. E., Uraltseva N. N., “O povedenii svobodnoi granitsy vblizi granitsy oblasti”, Zap. nauch. semin. POMI, 221, 1995, 5–19 | MR | Zbl

[3] Athanasopoulos I., Caffarelli L. A., “Optimal regularity of lower dimensional obstacle problems”, Zap. nauch. semin. POMI, 310, 2004, 49–66 | MR | Zbl

[4] Athanasopoulos I., Caffarelli L. A., Salsa S., “The structure of the free boundary for lower dimensional obstacle problems”, Amer. J. Math., 130:2 (2008), 485–498 | DOI | MR | Zbl

[5] Caffarelli L. A., “Further regularity for the Signorini problem”, Comm. Partial Differential Equations, 4:9 (1979), 1067–1075 | DOI | MR | Zbl

[6] Caffarelli L. A., “The obstacle problem revisited”, J. Fourier Anal. Appl., 4:4–5 (1998), 383–402 | DOI | MR | Zbl

[7] Caffarelli L. A., Salsa S., Silvestre L., “Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian”, Invent. Math., 171:2 (2008), 425–461 | DOI | MR | Zbl

[8] De Silva D., Savin O., $C^\infty$ regularity of certain thin free boundaries, Preprint, 2014, arXiv: 1402.1098

[9] De Silva D., Savin O., Boundary Harnack estimates in slit domains and applications to thin free boundary problems, Preprint, 2014, arXiv: 1406.6039

[10] Garofalo N., Petrosyan A., “Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem”, Invent. Math., 177:2 (2009), 415–461 | DOI | MR | Zbl

[11] Koch H., Petrosyan A., Shi W., “Higher regularity of the free boundary in the elliptic Signorini problem”, Nonlinear Anal., 126 (2015), 3–44 | DOI | MR | Zbl

[12] Lions J.-L., Stampacchia G., “Variational inequalities”, Comm. Pure Appl. Math., 20 (1967), 493–519 | DOI | MR | Zbl

[13] Petrosyan A., Shahgholian H., Uraltseva N., Regularity of free boundaries in obstacle-type problems, Grad. Stud. Math., 136, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl

[14] Richardson D. J. A., Variational problems with thin obstacles, PhD.-Thesis, Univ. British Columbia, Canada, 1978 | MR

[15] Uraltseva N. N., “O regulyarnosti reshenii variatsionnykh neravenstv”, Uspekhi mat. nauk, 42:6 (1987), 151–174 | MR | Zbl

[16] Uraltseva N. N., “$C^1$-regulyarnost granitsy nekointsidentnogo mnozhestva v zadache s prepyatstviem”, Algebra i analiz, 8:2 (1996), 205–221 | MR | Zbl

[17] Weiss G. S., “Partial regularity for weak solutions of an elliptic free boundary problem”, Comm. Partial Differential Equations, 23:3–4 (1998), 439–455 | DOI | MR | Zbl