Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_3_a8, author = {N. Matevosyan and A. Petrosyan}, title = {Contact of a~thin free boundary with a~fixed one in the {Signorini} problem}, journal = {Algebra i analiz}, pages = {183--201}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a8/} }
N. Matevosyan; A. Petrosyan. Contact of a~thin free boundary with a~fixed one in the Signorini problem. Algebra i analiz, Tome 27 (2015) no. 3, pp. 183-201. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a8/
[1] Almgren F. J. (Jr.), Almgren's big regularity paper, $Q$-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, World Sci. Monogr. Ser. Math., 1, World Sci. Publ. Co., Inc., River Edge, NJ, 2000 | MR | Zbl
[2] Apushkinskaya D. E., Uraltseva N. N., “O povedenii svobodnoi granitsy vblizi granitsy oblasti”, Zap. nauch. semin. POMI, 221, 1995, 5–19 | MR | Zbl
[3] Athanasopoulos I., Caffarelli L. A., “Optimal regularity of lower dimensional obstacle problems”, Zap. nauch. semin. POMI, 310, 2004, 49–66 | MR | Zbl
[4] Athanasopoulos I., Caffarelli L. A., Salsa S., “The structure of the free boundary for lower dimensional obstacle problems”, Amer. J. Math., 130:2 (2008), 485–498 | DOI | MR | Zbl
[5] Caffarelli L. A., “Further regularity for the Signorini problem”, Comm. Partial Differential Equations, 4:9 (1979), 1067–1075 | DOI | MR | Zbl
[6] Caffarelli L. A., “The obstacle problem revisited”, J. Fourier Anal. Appl., 4:4–5 (1998), 383–402 | DOI | MR | Zbl
[7] Caffarelli L. A., Salsa S., Silvestre L., “Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian”, Invent. Math., 171:2 (2008), 425–461 | DOI | MR | Zbl
[8] De Silva D., Savin O., $C^\infty$ regularity of certain thin free boundaries, Preprint, 2014, arXiv: 1402.1098
[9] De Silva D., Savin O., Boundary Harnack estimates in slit domains and applications to thin free boundary problems, Preprint, 2014, arXiv: 1406.6039
[10] Garofalo N., Petrosyan A., “Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem”, Invent. Math., 177:2 (2009), 415–461 | DOI | MR | Zbl
[11] Koch H., Petrosyan A., Shi W., “Higher regularity of the free boundary in the elliptic Signorini problem”, Nonlinear Anal., 126 (2015), 3–44 | DOI | MR | Zbl
[12] Lions J.-L., Stampacchia G., “Variational inequalities”, Comm. Pure Appl. Math., 20 (1967), 493–519 | DOI | MR | Zbl
[13] Petrosyan A., Shahgholian H., Uraltseva N., Regularity of free boundaries in obstacle-type problems, Grad. Stud. Math., 136, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl
[14] Richardson D. J. A., Variational problems with thin obstacles, PhD.-Thesis, Univ. British Columbia, Canada, 1978 | MR
[15] Uraltseva N. N., “O regulyarnosti reshenii variatsionnykh neravenstv”, Uspekhi mat. nauk, 42:6 (1987), 151–174 | MR | Zbl
[16] Uraltseva N. N., “$C^1$-regulyarnost granitsy nekointsidentnogo mnozhestva v zadache s prepyatstviem”, Algebra i analiz, 8:2 (1996), 205–221 | MR | Zbl
[17] Weiss G. S., “Partial regularity for weak solutions of an elliptic free boundary problem”, Comm. Partial Differential Equations, 23:3–4 (1998), 439–455 | DOI | MR | Zbl