Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_3_a7, author = {N. V. Krylov}, title = {H\"ormander's theorem for stochastic partial differential equations}, journal = {Algebra i analiz}, pages = {157--182}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a7/} }
N. V. Krylov. H\"ormander's theorem for stochastic partial differential equations. Algebra i analiz, Tome 27 (2015) no. 3, pp. 157-182. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a7/
[1] Bismut J.-M., “Martingales, the Malliavin calculus and Hörmander's theorem”, Stochastic Integrals, Proc. Sympos. (Univ. Durham, Durham, 1980), Lecture Notes in Math., 851, Springer, Berlin, 1981, 85–109 | DOI | MR
[2] Bismut J.-M., “Martingales, the Malliavin calculus and hypoellipticity under general Hörmander's conditions”, Z. Wahrsch. Verw. Gebiete, 56:4 (1981), 469–505 | DOI | MR | Zbl
[3] Blagoveschenskii Yu. N., Freidlin M. I., “Nekotorye svoistva diffuzionnykh protsessov, zavisyaschikh ot parametra”, Dokl. AN SSSR, 138:3 (1961), 508–511 | MR
[4] Cattiaux P., Mesnager L., “Hypoelliptic non-homogeneous diffusions”, Probab. Theory Related Fields, 123:4 (2002), 453–483 | DOI | MR | Zbl
[5] Chaleyat-Maurel M., Michel M., “Hypoellipticity theorems and conditional laws”, Z. Wahrsch. Verw. Gebiete, 65:4 (1984), 573–597 | DOI | MR | Zbl
[6] Ikeda N., Watanabe S., Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, 2nd ed., North-Holland Publ. Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989 | MR | Zbl
[7] Krylov N. V., “On the Itô-Wentzell formula for distribution-valued processes and related topics”, Probab. Theory Related Fields, 150:1–2 (2011), 295–319 | DOI | MR | Zbl
[8] Krylov N. V., “Hörmander's theorem for parabolic equations with coefficients measurable in the time variable”, SIAM J. Math. Anal., 46:1 (2014), 854–870 | DOI | MR | Zbl
[9] Krylov N. V., “Hypoellipticity for filtering problems of partially observable diffusion processes”, Probab. Theory Relat. Fields, 161:3 (2015), 687–718 | DOI | MR | Zbl
[10] John F., “On quasi-isometric mappings. I”, Comm. Pure Appl. Math., 21 (1968), 77–110 | DOI | MR | Zbl
[11] John F., “Note on the paper ‘On quasi-isometric mappings. I’ ”, Comm. Pure Appl. Math., 25 (1972), 497 | DOI | MR | Zbl
[12] Kunita H., “Stochastic partial differential equations connected with nonlinear filtering”, Nonlinear Filtering Stochastic Control (Cortona, 1981), Lecture Notes in Math., 972, Springer, Berlin, 1982, 100–169 | DOI | MR
[13] Kunita H., “Densities of a measure-valued process governed by a stochastic partial differential equation”, Systems Control Lett., 1:2 (1981–1982), 100–104 | DOI | MR | Zbl
[14] Kunita H., Stochastic flows and stochastic differential equations, Cambridge Stud. Adv. Math., 24, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[15] Malliavin P., “Stochastic calculus of variations and hypoelliptic operators”, Proc. Int. Sympos. SDE (Kyoto, 1976), Wiley, New York, 1978, 195–263 | MR
[16] Venttsel A. D., “Ob uravneniyakh teorii uslovnykh markovskikh protsessov”, Teor. veroyatn. i ee prim., 10:2 (1965), 390–393
[17] Stroock D., “The Malliavin calculus and its applications”, Stochastic Integrals, Proc. Sympos. (Univ. Durham, Durham, 1980), Lecture Notes in Math., 851, Springer, Berlin, 1981, 394–432 | DOI | MR
[18] Stroock D., “The Malliavin calculus and its application to second order parabolic differential equations. I”, Math. Systems Theory, 14:1 (1981), 25–65 | DOI | MR | Zbl
[19] Vrkoc̆ I., “Liouville formula for systems of linear homogeneous Itô stochastic differential equations”, Comment. Math. Univ. Carolinae, 19:1 (1978), 141–146 | MR | Zbl