H\"ormander's theorem for stochastic partial differential equations
Algebra i analiz, Tome 27 (2015) no. 3, pp. 157-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hörmander's type hypoellipticity theorem for stochastic partial differential equations is proved in the case where the coefficients are only measurable with respect to the time variable. Such equations arise, for instance, in filtering theory of partially observable diffusion processes. If one sets all coefficients of the stochastic part to be zero, one gets new results for usual parabolic PDEs.
Keywords: hypoellipticity, SPDEs, Hörmander's theorem.
@article{AA_2015_27_3_a7,
     author = {N. V. Krylov},
     title = {H\"ormander's theorem for stochastic partial differential equations},
     journal = {Algebra i analiz},
     pages = {157--182},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a7/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - H\"ormander's theorem for stochastic partial differential equations
JO  - Algebra i analiz
PY  - 2015
SP  - 157
EP  - 182
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a7/
LA  - en
ID  - AA_2015_27_3_a7
ER  - 
%0 Journal Article
%A N. V. Krylov
%T H\"ormander's theorem for stochastic partial differential equations
%J Algebra i analiz
%D 2015
%P 157-182
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a7/
%G en
%F AA_2015_27_3_a7
N. V. Krylov. H\"ormander's theorem for stochastic partial differential equations. Algebra i analiz, Tome 27 (2015) no. 3, pp. 157-182. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a7/

[1] Bismut J.-M., “Martingales, the Malliavin calculus and Hörmander's theorem”, Stochastic Integrals, Proc. Sympos. (Univ. Durham, Durham, 1980), Lecture Notes in Math., 851, Springer, Berlin, 1981, 85–109 | DOI | MR

[2] Bismut J.-M., “Martingales, the Malliavin calculus and hypoellipticity under general Hörmander's conditions”, Z. Wahrsch. Verw. Gebiete, 56:4 (1981), 469–505 | DOI | MR | Zbl

[3] Blagoveschenskii Yu. N., Freidlin M. I., “Nekotorye svoistva diffuzionnykh protsessov, zavisyaschikh ot parametra”, Dokl. AN SSSR, 138:3 (1961), 508–511 | MR

[4] Cattiaux P., Mesnager L., “Hypoelliptic non-homogeneous diffusions”, Probab. Theory Related Fields, 123:4 (2002), 453–483 | DOI | MR | Zbl

[5] Chaleyat-Maurel M., Michel M., “Hypoellipticity theorems and conditional laws”, Z. Wahrsch. Verw. Gebiete, 65:4 (1984), 573–597 | DOI | MR | Zbl

[6] Ikeda N., Watanabe S., Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, 2nd ed., North-Holland Publ. Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989 | MR | Zbl

[7] Krylov N. V., “On the Itô-Wentzell formula for distribution-valued processes and related topics”, Probab. Theory Related Fields, 150:1–2 (2011), 295–319 | DOI | MR | Zbl

[8] Krylov N. V., “Hörmander's theorem for parabolic equations with coefficients measurable in the time variable”, SIAM J. Math. Anal., 46:1 (2014), 854–870 | DOI | MR | Zbl

[9] Krylov N. V., “Hypoellipticity for filtering problems of partially observable diffusion processes”, Probab. Theory Relat. Fields, 161:3 (2015), 687–718 | DOI | MR | Zbl

[10] John F., “On quasi-isometric mappings. I”, Comm. Pure Appl. Math., 21 (1968), 77–110 | DOI | MR | Zbl

[11] John F., “Note on the paper ‘On quasi-isometric mappings. I’ ”, Comm. Pure Appl. Math., 25 (1972), 497 | DOI | MR | Zbl

[12] Kunita H., “Stochastic partial differential equations connected with nonlinear filtering”, Nonlinear Filtering Stochastic Control (Cortona, 1981), Lecture Notes in Math., 972, Springer, Berlin, 1982, 100–169 | DOI | MR

[13] Kunita H., “Densities of a measure-valued process governed by a stochastic partial differential equation”, Systems Control Lett., 1:2 (1981–1982), 100–104 | DOI | MR | Zbl

[14] Kunita H., Stochastic flows and stochastic differential equations, Cambridge Stud. Adv. Math., 24, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[15] Malliavin P., “Stochastic calculus of variations and hypoelliptic operators”, Proc. Int. Sympos. SDE (Kyoto, 1976), Wiley, New York, 1978, 195–263 | MR

[16] Venttsel A. D., “Ob uravneniyakh teorii uslovnykh markovskikh protsessov”, Teor. veroyatn. i ee prim., 10:2 (1965), 390–393

[17] Stroock D., “The Malliavin calculus and its applications”, Stochastic Integrals, Proc. Sympos. (Univ. Durham, Durham, 1980), Lecture Notes in Math., 851, Springer, Berlin, 1981, 394–432 | DOI | MR

[18] Stroock D., “The Malliavin calculus and its application to second order parabolic differential equations. I”, Math. Systems Theory, 14:1 (1981), 25–65 | DOI | MR | Zbl

[19] Vrkoc̆ I., “Liouville formula for systems of linear homogeneous Itô stochastic differential equations”, Comment. Math. Univ. Carolinae, 19:1 (1978), 141–146 | MR | Zbl