Regularity of solutions of the fractional porous medium flow with exponent~$1/2$
Algebra i analiz, Tome 27 (2015) no. 3, pp. 125-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

The object of study is the regularity of a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is $u_t=\nabla\cdot(u\nabla(-\Delta)^{-1/2}u)$. For definiteness, the problem is posed in $\{x\in\mathbb R^N, t\in\mathbb R\}$ with nonnegative initial data $u(x,0)$ that is integrable and decays at infinity. Previous papers have established the existence of mass-preserving, nonnegative weak solutions satisfying energy estimates and finite propagation, as well as the boundedness of nonnegative solutions with $L^1$ data, for the more general family of equations $u_t=\nabla\cdot(u\nabla(-\Delta)^{-s}u)$, $0$. Here, the $C^\alpha$ regularity of such weak solutions is established in the difficult fractional exponent case $s=1/2$. For the other fractional exponents $s\in(0,1)$ this Hölder regularity has been proved in an earlier paper. Continuity was under question because the nonlinear differential operator has first-order differentiation. The method combines delicate De Giorgi type estimates with iterated geometric corrections that are needed to avoid the divergence of some essential energy integrals due to fractional long-range effects.
Keywords: porous medium equation, fractional Laplacian, nonlocal diffusion operator, Hölder regularity.
@article{AA_2015_27_3_a6,
     author = {L. Caffarelli and J. L. V\'azquez},
     title = {Regularity of solutions of the fractional porous medium flow with exponent~$1/2$},
     journal = {Algebra i analiz},
     pages = {125--156},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a6/}
}
TY  - JOUR
AU  - L. Caffarelli
AU  - J. L. Vázquez
TI  - Regularity of solutions of the fractional porous medium flow with exponent~$1/2$
JO  - Algebra i analiz
PY  - 2015
SP  - 125
EP  - 156
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a6/
LA  - en
ID  - AA_2015_27_3_a6
ER  - 
%0 Journal Article
%A L. Caffarelli
%A J. L. Vázquez
%T Regularity of solutions of the fractional porous medium flow with exponent~$1/2$
%J Algebra i analiz
%D 2015
%P 125-156
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a6/
%G en
%F AA_2015_27_3_a6
L. Caffarelli; J. L. Vázquez. Regularity of solutions of the fractional porous medium flow with exponent~$1/2$. Algebra i analiz, Tome 27 (2015) no. 3, pp. 125-156. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a6/

[1] Baker G. R., Li X., Morlet A. C., “Analytic structure of two 1D-transport equations with nonlocal fluxes”, Phys. D, 91:4 (1996), 349–375 | DOI | MR | Zbl

[2] Biler P., Karch G., Monneau R., “Nonlinear diffusion of dislocation density and self-similar solutions”, Comm. Math. Phys., 294:1 (2010), 145–168 | DOI | MR | Zbl

[3] Caffarelli L. A., Chan Ch.-H., Vasseur A., “Regularity theory for nonlinear integral operators”, J. Amer. Math. Soc., 24:3 (2011), 849–869 | DOI | MR | Zbl

[4] Caffarelli L. A., Silvestre L., “An extension problem related to the fractional Laplacian”, Comm. Partial Differential Equations, 32:7–9 (2007), 1245–1260 | DOI | MR | Zbl

[5] Caffarelli L. A., Soria F., Vázquez J. L., “Regularity of solutions of the fractional porous medium flow”, J. Eur. Math. Soc., 15:3 (2013), 1701–1746 | DOI | MR | Zbl

[6] Caffarelli L. A., Vázquez J. L., “Nonlinear porous medium flow with fractional potential pressure”, Arch. Ration. Mech. Anal., 202:2 (2011), 537–565 | DOI | MR | Zbl

[7] Caffarelli L. A., Vázquez J. L., “Asymptotic behaviour of a porous medium equation with fractional diffusion”, Discrete Contin. Dyn. Syst., 29:4 (2011), 1393–1404 | MR | Zbl

[8] Caffarelli L. A., Vasseur A., “Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation”, Ann. of Math. (2), 171:3 (2010), 1903–1930 | DOI | MR | Zbl

[9] Carrillo J. A., Ferreira L., Precioso J. C., “A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity”, Adv. Math., 231:1 (2012), 306–327 | DOI | MR | Zbl

[10] Castro A., Córdoba D., “Global existence, singularities and ill-posedness for a nonlocal flux”, Adv. Math., 219:6 (2008), 1916–1936 | DOI | MR | Zbl

[11] Chae D., Córdoba A., Córdoba D., Fontelos M. A., “Finite time singularities in a 1D model of the quasi-geostrophic equation”, Adv. Math., 194:1 (2005), 203–223 | DOI | MR | Zbl

[12] Deslippe J., Tesdtrom R., Daw M. S., Chrzan D., Neeraj T., Mills M., “Dynamics scaling in a simple one-dimensional model of dislocation activity”, Philos. Mag., 84 (2004), 2445–2454 | DOI

[13] Head A. K., “Dislocation group dynamics. I. Similarity solutions od the $n$-body problem”, Philos. Mag., 26 (1972), 43–53 | DOI

[14] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR

[15] de Pablo A., Quirós F., Rodriguez A., Vázquez J. L., “Fractional porous medium equation”, Adv. Math., 226:2 (2011), 1378–1409 | DOI | MR | Zbl

[16] de Pablo A., Quirós F., Rodriguez A., Vázquez J. L., “A general fractional porous medium equation”, Comm. Pure App. Math., 65:9 (2012), 1242–1284 | DOI | MR | Zbl

[17] Stein E., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NS, 1970 | MR

[18] Serfaty S., Vázquez J. L., “A Mean field equation as limit of nonlinear diffusion with fractional Laplacian operators”, Calc. Var. Partial Differential Equ., 49:3–4 (2014), 1091–1120 | DOI | MR | Zbl

[19] Valdinoci E., “From the long jump random walk to the fractional Laplacian”, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33–44 | MR | Zbl

[20] Vázquez J. L., “Nonlinear diffusion with fractional Laplacian operators”, Nonlinear Partial Differential Equations, Abel Symp., 7, Springer, Heidelberg, 2012, 271–298 | DOI | MR | Zbl

[21] Vázquez J. L., “Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators”, Disc. Contin. Dyn. Syst., 7:4 (2014), 857–885 | DOI | MR | Zbl

[22] Vázquez J. L., “Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type”, J. Eur. Math. Soc., 16:4 (2014), 769–803 | DOI | MR | Zbl