Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_3_a4, author = {A. Volberg}, title = {The proof of the nonhomogeneous $T1$ theorem via averaging of dyadic shifts}, journal = {Algebra i analiz}, pages = {75--94}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a4/} }
A. Volberg. The proof of the nonhomogeneous $T1$ theorem via averaging of dyadic shifts. Algebra i analiz, Tome 27 (2015) no. 3, pp. 75-94. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a4/
[1] Christ M., “A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral”, Colloq. Math., 60/61:2 (1990), 601–628 | MR | Zbl
[2] Hytönen T., “The sharp weighted bound for general Calderón–Zygmund operators”, Ann. of Math. (2), 175:3 (2012), 1473–1506 | DOI | MR | Zbl
[3] David G., Journé L. L., “A boundedness criterion for generalized Calderón–Zygmund operators”, Ann. of Math. (2), 120 (1984), 371–397 | DOI | MR | Zbl
[4] Hytönen T., Martikainen H., “Non-homogeneous $Tb$ theorem and random dyadic cubes on metric measure spaces”, J. Geom. Anal., 22:4 (2012), 1071–1107 | DOI | MR | Zbl
[5] Hytönen T., Pérez C., Treil S., Volberg A., “Sharp weighted estimates for dyadic shifts and the $A_2$ conjecture”, J. Reine Angew. Math., 687 (2014), 43–86 ; arXiv: 1010.0755v2 | MR | Zbl
[6] Nazarov F., Reznikov A., Volberg A., “The proof of $A_2$ conjecture in a geometrically doubling metric space”, Indiana Univ. Math. J., 62:5 (2013), 1503–1533 ; arXiv: 1106.1342 | DOI | MR | Zbl
[7] Nazarov F., Treil S., Volberg A., “The $Tb$-theorem on non-homogeneous spaces”, Acta Math., 190:2 (2003), 151–239 | DOI | MR | Zbl
[8] Nazarov F., Treil S., Volberg A., “Cauchy integral and Calderon–Zygmund operators on nonhomogeneous spaces”, Internat. Math. Res. Notices, 1997:15 (1997), 703–726 | DOI | MR | Zbl
[9] Nazarov F., Treil S., Volberg A., “Two weight inequalities for individual Haar multipliers and other well localized operators”, Math. Res. Lett., 15:3 (2008), 583–597 | DOI | MR | Zbl
[10] Nazarov F., Treil S., Volberg A., Two weight estimate for the Hilbert transform and corona decomposition for non-doubling measures, Preprint, 2004, arXiv: 1003.1596v1
[11] Tolsa X., “$L^2$-boundedness of the Cauchy integral operator for continuous measures”, Duke Math. J., 98:2 (1999), 269–304 | DOI | MR | Zbl