Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_3_a2, author = {M. Bildhauer and M. Fuchs and C. Tietz}, title = {$C^{1,\alpha}$-interior regularity for minimizers of a~class of variational problems with linear growth related to image inpainting}, journal = {Algebra i analiz}, pages = {51--65}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a2/} }
TY - JOUR AU - M. Bildhauer AU - M. Fuchs AU - C. Tietz TI - $C^{1,\alpha}$-interior regularity for minimizers of a~class of variational problems with linear growth related to image inpainting JO - Algebra i analiz PY - 2015 SP - 51 EP - 65 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a2/ LA - en ID - AA_2015_27_3_a2 ER -
%0 Journal Article %A M. Bildhauer %A M. Fuchs %A C. Tietz %T $C^{1,\alpha}$-interior regularity for minimizers of a~class of variational problems with linear growth related to image inpainting %J Algebra i analiz %D 2015 %P 51-65 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a2/ %G en %F AA_2015_27_3_a2
M. Bildhauer; M. Fuchs; C. Tietz. $C^{1,\alpha}$-interior regularity for minimizers of a~class of variational problems with linear growth related to image inpainting. Algebra i analiz, Tome 27 (2015) no. 3, pp. 51-65. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a2/
[1] Adams R. A., Sobolev spaces, Pure Appl. Math., 65, Acad. Press, New York–London, 1975 | MR | Zbl
[2] Arias P., Caselles V., Facciolo G., Lazcano V., Sadek R., “Nonlocal variational models for inpainting and interpolation”, Math. Models Methods Appl. Sci., 22, suppl. 2 (2012), 1230003, 65 pp. | DOI | MR | Zbl
[3] Arias P., Casseles V., Sapiro G., A variational framework for non-local image inpainting, IMA Preprint Series, 2265, 2009
[4] Arias P., Facciolo G., Casseles V., Sapiro G., “A variational framework for exemplar-based image inpainting”, Int. J. Comput. Vis., 93:3 (2011), 319–347 | DOI | MR | Zbl
[5] Aubert G., Kornprobst P., Mathematical problems in image processing, Appl. Math. Sci., 147, Springer-Verlag, New York, 2002 | MR | Zbl
[6] Bertalmio M., Ballester C., Sapiro G., Caselles V., “Image inpainting”, Proc. 27th. Conf. Computer Graphics and Interactive Techniques, ACM press/Addison-Wesley Publ. Co., 2000, 417–424
[7] Bildhauer M., Convex variational problems: linear, nearly linear and anisotropic growth conditions, Lecture Notes in Math., 1818, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[8] Bildhauer M., Fuchs M., “A variational approach to the denoising of images based on different variants of the TV-regularization”, Appl. Math. Optim., 66:3 (2012), 331–361 | DOI | MR | Zbl
[9] Bildhauer M., Fuchs M., “On some perturbations of the total variation image inpainting method. Part 1: Regularity theory”, J. Math. Sci., 202:2 (2014), 154–169 | DOI | MR | Zbl
[10] Bildhauer M., Fuchs M., “On some perturbations of the total variation image inpainting method. Part 2: Relaxation and dual variational formulation”, J. Math. Sci., 205:2 (2015), 121–140 | DOI | MR | Zbl
[11] Bildhauer M., Fuchs M., Weickert J., Denoising and inpainting of images using TV-type energies: computational and theoretical aspects (to appear)
[12] Burger M., He L., Schönlieb C.-B., “Cahn–Hilliard inpainting and a generalization for grayvalue images”, SIAM J. Imaging Sci., 2:4 (2009), 1129–1167 | DOI | MR | Zbl
[13] Chan T. F., Kang S. H., Shen J., “Euler's elastica and curvature based inpaintings”, SIAM J. Appl. Math., 63:2 (2002), 564–592 | MR | Zbl
[14] Chan T. F., Shen J., “Nontexture inpainting by curvature-driven diffusions”, J. Vis. Comm. Image Represent., 12:4 (2001), 436–449 | DOI
[15] Chan T. F., Shen J., “Mathematical models for local nontexture inpaintings”, SIAM J. Appl. Math., 62:3 (2001/02), 1019–1043 | MR
[16] Esedoglu S., Shen J., “Digital inpainting based on the Mumford–Shah–Euler image model”, European J. Appl. Math., 13:4 (2002), 353–370 | DOI | MR | Zbl
[17] Frehse J., Seregin G., “Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening”, Amer. Math. Soc. Transl. Ser. 2, 193, Amer. Math. Soc., Providence, RI, 1999, 127–152 | MR
[18] Giusti E., Minimal surfaces and functions of bounded variation, Monogr. Math., 80, Birkhäuser Verlag, Basel, 1984 | MR | Zbl
[19] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl
[20] Kinderlehrer D., Stampacchia G., An introduction to variational inequalities and their applications, Pure Appl. Math., 88, Acad. Press, New York, 1980 | MR | Zbl
[21] Papafitsoros K., Sengul B., Schönlieb C.-B., Combined first and second order total variation impainting using split bregman, Preprint, IPOL, 2012
[22] Shen J., “Inpainting and the fundamental problem of image processing”, SIAM News, 36:5 (2003), 1–4
[23] Stampacchia G., “Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus”, Ann. Inst. Fourier (Grenoble), 15:1 (1965), 189–258 | DOI | MR | Zbl