Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data
Algebra i analiz, Tome 27 (2015) no. 3, pp. 272-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to accommodate general initial data, an appropriately relaxed notion of renormalized Lagrangian solutions for the Semi-Geostrophic Shallow Water system in physical space is introduced. This is shown to be consistent with previous notions, generalizing them. A weak stability result is obtained first, followed by a general existence result whose proof employs the said stability and approximating solutions with regular initial data. The renormalization property ensures the return from physical to dual space and ultimately enables us to achieve the desired results.
Keywords: Semi-Geostrophic Shallow Water system, flows of maps, optimal mass transport, Wasserstein metric, optimal maps, absolutely continuous curves.
@article{AA_2015_27_3_a12,
     author = {M. Feldman and A. Tudorascu},
     title = {Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data},
     journal = {Algebra i analiz},
     pages = {272--300},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a12/}
}
TY  - JOUR
AU  - M. Feldman
AU  - A. Tudorascu
TI  - Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data
JO  - Algebra i analiz
PY  - 2015
SP  - 272
EP  - 300
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a12/
LA  - en
ID  - AA_2015_27_3_a12
ER  - 
%0 Journal Article
%A M. Feldman
%A A. Tudorascu
%T Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data
%J Algebra i analiz
%D 2015
%P 272-300
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a12/
%G en
%F AA_2015_27_3_a12
M. Feldman; A. Tudorascu. Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data. Algebra i analiz, Tome 27 (2015) no. 3, pp. 272-300. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a12/

[1] Ambrosio L., “Transport equation and Cauchy problem for BV vector fields”, Invent. Math., 158:2 (2004), 227–260 | DOI | MR | Zbl

[2] Ambrosio L., Colombo M., De Philippis G., Figalli A., “Existence of Eulerian solutions to the semigeostrophic equations in physical space: the 2-dimensional periodic case”, Comm. Partial Differential Equations, 37:12 (2012), 2209–2227 | DOI | MR | Zbl

[3] Ambrosio L., Colombo M., De Philippis G., Figalli A., A global existence result for the semigeostrophic equations in three dimensional convex domains, Preprint, 2012, arXiv: 1205.5435

[4] Ambrosio L., Gangbo W., “Hamiltonian ODE in the Wasserstein spaces of probability measures”, Comm. Pure Appl. Math., 61:1 (2008), 18–53 | DOI | MR | Zbl

[5] Ambrosio L., Gigli N., Savaré G., Gradient flows in metric spaces and the Wasserstein spaces of probability measures, Lectures Math. ETH Zurich, Birkhäuser, Basel, 2005 | MR

[6] Benamou J.-D., Brenier Y., “Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampere/transport problem”, SIAM J. Appl. Math., 58:5 (1998), 1450–1461 | DOI | MR | Zbl

[7] Brenier Y., “Polar factorization and monotone rearrangement of vector-valued functions”, Comm. Pure Appl. Math., 44:4 (1991), 375–417 | DOI | MR | Zbl

[8] Cullen M., Private communication

[9] Cullen M., Feldman M., “Lagrangian solutions of semigeostrophic equations in physical space”, SIAM J. Math. Anal., 37:5 (2006), 1371–1395 | DOI | MR | Zbl

[10] Cullen M., Gangbo W., “A variational approach for the 2-dimensional semi-geostrophic shallow water equations”, Arch. Ration. Mech. Anal., 156 (2001), 241–273 | DOI | MR | Zbl

[11] Cullen M., Maroofi H., “The fully compressible semi-geostrophic system from meteorology”, Arch. Ration. Mech. Anal., 167:4 (2003), 309–336 | DOI | MR | Zbl

[12] Cullen M., Purser R. J., “An extended Lagrangian theory of semi-geostrophic frontogenesis”, J. Atmospheric Sci., 41:9 (1984), 1477–1497 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[13] Evans L. C., Gariepy R. F., Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992 | MR | Zbl

[14] Faria J. C. O., Lopes F., Nussenzveig Lopes H. J., “Weak stability of Lagrangian solutions to the semigeostrophic equations”, Nonlinearity, 22 (2009), 2521–2539 | DOI | MR | Zbl

[15] Feldman M., Tudorascu A., “On Lagrangian solutions for the semigeostrophic system with singular initial data”, SIAM J. Math. Anal., 45:3 (2013), 1616–1640 | DOI | MR | Zbl

[16] Feldman M., Tudorascu A., On the semigeostrophic system in physical space with general initial data (to appear)

[17] Gangbo W., Nguyen T., Tudorascu A., “Euler–Poisson systems as action-minimizing paths in the Wasserstein space”, Arch. Ration. Mech. Anal., 192:3 (2009), 419–452 | DOI | MR | Zbl

[18] Hoskins B., “The geostrophic momentum approximation and the semigeostrophic equations”, J. Atmospheric. Sci., 32:2 (1975), 233–242 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[19] Villani C., Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl