Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_3_a12, author = {M. Feldman and A. Tudorascu}, title = {Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data}, journal = {Algebra i analiz}, pages = {272--300}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a12/} }
TY - JOUR AU - M. Feldman AU - A. Tudorascu TI - Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data JO - Algebra i analiz PY - 2015 SP - 272 EP - 300 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a12/ LA - en ID - AA_2015_27_3_a12 ER -
%0 Journal Article %A M. Feldman %A A. Tudorascu %T Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data %J Algebra i analiz %D 2015 %P 272-300 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a12/ %G en %F AA_2015_27_3_a12
M. Feldman; A. Tudorascu. Lagrangian solutions for the semi-geostrophic shallow water system in physical space with general initial data. Algebra i analiz, Tome 27 (2015) no. 3, pp. 272-300. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a12/
[1] Ambrosio L., “Transport equation and Cauchy problem for BV vector fields”, Invent. Math., 158:2 (2004), 227–260 | DOI | MR | Zbl
[2] Ambrosio L., Colombo M., De Philippis G., Figalli A., “Existence of Eulerian solutions to the semigeostrophic equations in physical space: the 2-dimensional periodic case”, Comm. Partial Differential Equations, 37:12 (2012), 2209–2227 | DOI | MR | Zbl
[3] Ambrosio L., Colombo M., De Philippis G., Figalli A., A global existence result for the semigeostrophic equations in three dimensional convex domains, Preprint, 2012, arXiv: 1205.5435
[4] Ambrosio L., Gangbo W., “Hamiltonian ODE in the Wasserstein spaces of probability measures”, Comm. Pure Appl. Math., 61:1 (2008), 18–53 | DOI | MR | Zbl
[5] Ambrosio L., Gigli N., Savaré G., Gradient flows in metric spaces and the Wasserstein spaces of probability measures, Lectures Math. ETH Zurich, Birkhäuser, Basel, 2005 | MR
[6] Benamou J.-D., Brenier Y., “Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampere/transport problem”, SIAM J. Appl. Math., 58:5 (1998), 1450–1461 | DOI | MR | Zbl
[7] Brenier Y., “Polar factorization and monotone rearrangement of vector-valued functions”, Comm. Pure Appl. Math., 44:4 (1991), 375–417 | DOI | MR | Zbl
[8] Cullen M., Private communication
[9] Cullen M., Feldman M., “Lagrangian solutions of semigeostrophic equations in physical space”, SIAM J. Math. Anal., 37:5 (2006), 1371–1395 | DOI | MR | Zbl
[10] Cullen M., Gangbo W., “A variational approach for the 2-dimensional semi-geostrophic shallow water equations”, Arch. Ration. Mech. Anal., 156 (2001), 241–273 | DOI | MR | Zbl
[11] Cullen M., Maroofi H., “The fully compressible semi-geostrophic system from meteorology”, Arch. Ration. Mech. Anal., 167:4 (2003), 309–336 | DOI | MR | Zbl
[12] Cullen M., Purser R. J., “An extended Lagrangian theory of semi-geostrophic frontogenesis”, J. Atmospheric Sci., 41:9 (1984), 1477–1497 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[13] Evans L. C., Gariepy R. F., Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992 | MR | Zbl
[14] Faria J. C. O., Lopes F., Nussenzveig Lopes H. J., “Weak stability of Lagrangian solutions to the semigeostrophic equations”, Nonlinearity, 22 (2009), 2521–2539 | DOI | MR | Zbl
[15] Feldman M., Tudorascu A., “On Lagrangian solutions for the semigeostrophic system with singular initial data”, SIAM J. Math. Anal., 45:3 (2013), 1616–1640 | DOI | MR | Zbl
[16] Feldman M., Tudorascu A., On the semigeostrophic system in physical space with general initial data (to appear)
[17] Gangbo W., Nguyen T., Tudorascu A., “Euler–Poisson systems as action-minimizing paths in the Wasserstein space”, Arch. Ration. Mech. Anal., 192:3 (2009), 419–452 | DOI | MR | Zbl
[18] Hoskins B., “The geostrophic momentum approximation and the semigeostrophic equations”, J. Atmospheric. Sci., 32:2 (1975), 233–242 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[19] Villani C., Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl