On the solvability of initial-boundary value problems for a~viscous compressible fluid in an infinite time interval
Algebra i analiz, Tome 27 (2015) no. 3, pp. 238-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution is estimated of the first boundary-value problem for the Navier–Stokes equations in the case of a compressible fluid in an infinite time interval; the solvability of the problem and the exponential decay of the solution as $t\to\infty$ are proved. The proof is based on the “free work” method due to Prof. M. Padula. It is shown that the method is applicable to the analysis of free boundary problems.
Keywords: Navier–Stokes equations, viscosity, anisotropic Sobolev–Slobodetski spaces.
@article{AA_2015_27_3_a11,
     author = {V. A. Solonnikov},
     title = {On the solvability of initial-boundary value problems for a~viscous compressible fluid in an infinite time interval},
     journal = {Algebra i analiz},
     pages = {238--271},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a11/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - On the solvability of initial-boundary value problems for a~viscous compressible fluid in an infinite time interval
JO  - Algebra i analiz
PY  - 2015
SP  - 238
EP  - 271
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a11/
LA  - en
ID  - AA_2015_27_3_a11
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T On the solvability of initial-boundary value problems for a~viscous compressible fluid in an infinite time interval
%J Algebra i analiz
%D 2015
%P 238-271
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a11/
%G en
%F AA_2015_27_3_a11
V. A. Solonnikov. On the solvability of initial-boundary value problems for a~viscous compressible fluid in an infinite time interval. Algebra i analiz, Tome 27 (2015) no. 3, pp. 238-271. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a11/

[1] Padula M., “On the exponential stability of the rest state of a viscous compressible fluid”, J. Math. Fluid Mech., 1:1 (1999), 62–77 | DOI | MR | Zbl

[2] Padula M., Asymptotic stability of steady compressible fluids, Lecture Notes in Math., 2024, Springer, Heidelberg, 2011, 229 pp. | DOI | MR | Zbl

[3] Denisova I. V., “On energy inequality for the problem on the evolution of two fluids of different types without surface tension”, J. Math. Fluid Mech., 17:1 (2015), 183–198 | DOI | MR | Zbl

[4] Ladyzhenskaya O. A., Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave–Stoksa”, Zap. nauch. semin. LOMI, 59, 1976, 81–116 | MR | Zbl

[5] Bogovskii M. E., “O reshenii nekotorykh zadach vektornogo analiza, svyazannykh s operatorami Div i Grad”, Tr. semin. S. L. Soboleva, 1, 1980, 5–40 | MR

[6] Galdi L. P., An introduction to the mathematical theory of the Navier–Stokes equations, v. 1, Springer Tracts Nat. Philos., 38, Linear steady problems, Springer-Verlag, New York, 1994 | MR | Zbl

[7] Golovkin K. K., “Ob ekvivalentnykh normirovkakh drobnykh prostranstv”, Tr. Mat. in-ta AN SSSR, 66, 1962, 364–383 | MR | Zbl

[8] Smirnov V. I., Kurs vysshei matematiki, v. 4, Gostekhizdat, 1967

[9] Solonnikov V. A., “On problem of stability of equilibrium figures of uniformly rotating viscous incompressible liquid”, Instability in Models Connected with Fluid Flows, v. II, Int. Math. Ser. (N.Y.), 7, Springer, New York, 2008, 189–254 | DOI | MR

[10] Frolova E. V., “Free boundary problem of magnetohydrodynamics”, Zap. nauch. semin. POMI, 425, 2014, 149–178

[11] Denisova I. V., “Global $L_2$-solvability of a problem governing two-phase fluid motion without surface tension”, Portugal. Math., 71:1 (2014), 1–24 | DOI | MR | Zbl

[12] Solonnikov V. A., Tani A., “Free boundary problem for a viscous compressible flow with a surface tension”, Constantin Caratheodory: an International Tribute, v. II, World Sci. Publ. Co., 1991, 1270–1303 | DOI | MR

[13] Matsumura A., Nishida T., “The initial-boundary value problem for the equations of motion of compressible viscous and heat conducting fluids”, Proc. Japan Acad. Ser. A, 55:9 (1979), 337–342 | DOI | MR | Zbl

[14] Matsumura A., Nishida T., “Initial-boundary value problems for the equations of motion of compressible viscous and heat conducting fluids”, Comm. Math. Physics, 89:4 (1983), 445–464 | DOI | MR | Zbl

[15] Ströhmer G., “About the resolvent of an operator from fluid dynamics”, Math. Z., 194:2 (1987), 183–191 | DOI | MR | Zbl

[16] Ströhmer G., “About compressible fluid in a bounded region”, Pacific J. Math., 143:2 (1990), 359–375 | DOI | MR | Zbl

[17] Zajaczkowski W. M., “On non-stationary motion of a compressible barotropic viscous fluid bounded by a free surface”, Diss. Math. (Rozprawy Mat.), 324 (1993), 1–101 | MR

[18] Zajaczkowski W. M., “On non-stationary motion of a compressible barotropic viscous fluid bounded by a free surface”, SIAM J. Math. Anal., 25:1 (1994), 1–84 | DOI | MR | Zbl

[19] Enomoto Y., Shibata Y., “On the $\mathcal R$-sectoriality and the initial boundary value problem for the viscous compressible fluid flow”, Funkcialaj Equac., 56:3 (2013), 441–505 | DOI | MR | Zbl

[20] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi mat. nauk, 19:3 (1964), 53–161 | MR | Zbl