Narrow domains and the Harnack inequality for elliptic equations
Algebra i analiz, Tome 27 (2015) no. 3, pp. 220-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a direct proof of Moser's Harnack inequality that does not involve iterations. The method is based on a recursive estimate for solutions in domains of small measure. Such estimates can also be useful for other applications.
Keywords: second-order elliptic equations, Harnack inequality, measurable coefficients.
@article{AA_2015_27_3_a10,
     author = {M. V. Safonov},
     title = {Narrow domains and the {Harnack} inequality for elliptic equations},
     journal = {Algebra i analiz},
     pages = {220--237},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a10/}
}
TY  - JOUR
AU  - M. V. Safonov
TI  - Narrow domains and the Harnack inequality for elliptic equations
JO  - Algebra i analiz
PY  - 2015
SP  - 220
EP  - 237
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a10/
LA  - en
ID  - AA_2015_27_3_a10
ER  - 
%0 Journal Article
%A M. V. Safonov
%T Narrow domains and the Harnack inequality for elliptic equations
%J Algebra i analiz
%D 2015
%P 220-237
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a10/
%G en
%F AA_2015_27_3_a10
M. V. Safonov. Narrow domains and the Harnack inequality for elliptic equations. Algebra i analiz, Tome 27 (2015) no. 3, pp. 220-237. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a10/

[1] Aleksandrov A. D., “Usloviya edinstvennosti i otsenki resheniya zadachi Dirikhle”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1963, no. 18, 5–29 | Zbl

[2] Giorgi E. De., “Sulla differenziabilitàe l`analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25–43 | MR | Zbl

[3] Evans L. C., Partial differential equations, Grad. Stud. Math., 19, 2nd ed., Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl

[4] Ferretti E., Safonov M. V., “Growth theorems and Harnack inequalities for second order parabolic equations”, Contemp. Math., 277, Amer. Math. Soc., Providence, RI, 2011, 87–112 | DOI | MR

[5] Han Q., Lin F., Elliptic partial differential equations, Courant Lecture Notes in Math., 1, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[6] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl

[7] Krylov H. B., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985 | MR

[8] Krylov H. B., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR. Ser. mat., 44:1 (1980), 161–175 | MR | Zbl

[9] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR

[10] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[11] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[12] Moser J., “A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math., 13 (1960), 457–468 | DOI | MR | Zbl

[13] Moser J., “On Harnack's inequality for elliptic differential equations”, Comm. Pure Appl. Math., 14 (1961), 577–591 | DOI | MR | Zbl

[14] Moser J., “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math., 17 (1964), 101–134 ; “Correction”, Comm. Pure Appl. Math., 20 (1967), 231–236 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Safonov M. V., “Neravenstvo Kharnaka dlya ellipticheskikh uravnenii i gelderovost ikh reshenii”, Zap. nauch. semin. LOMI, 96, 1980, 272–287 | MR | Zbl