Nonautonomous functionals, borderline cases and related function classes
Algebra i analiz, Tome 27 (2015) no. 3, pp. 6-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of nonautonomous functionals under study is characterized by the fact that the energy density changes its ellipticity and growth properties according to the point; some regularity results are proved for related minimisers. These results are the borderline counterpart of analogous ones previously derived for nonautonomous functionals with $(p,q)$-growth. Also, similar functionals related to Musielak–Orlicz spaces are discussed, in which basic properties like the density of smooth functions, the boundedness of maximal and integral operators, and the validity of Sobolev type inequalities are related naturally to the assumptions needed to prove the regularity of minima.
@article{AA_2015_27_3_a1,
     author = {P. Baroni and M. Colombo and G. Mingione},
     title = {Nonautonomous functionals, borderline cases and related function classes},
     journal = {Algebra i analiz},
     pages = {6--50},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a1/}
}
TY  - JOUR
AU  - P. Baroni
AU  - M. Colombo
AU  - G. Mingione
TI  - Nonautonomous functionals, borderline cases and related function classes
JO  - Algebra i analiz
PY  - 2015
SP  - 6
EP  - 50
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a1/
LA  - en
ID  - AA_2015_27_3_a1
ER  - 
%0 Journal Article
%A P. Baroni
%A M. Colombo
%A G. Mingione
%T Nonautonomous functionals, borderline cases and related function classes
%J Algebra i analiz
%D 2015
%P 6-50
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a1/
%G en
%F AA_2015_27_3_a1
P. Baroni; M. Colombo; G. Mingione. Nonautonomous functionals, borderline cases and related function classes. Algebra i analiz, Tome 27 (2015) no. 3, pp. 6-50. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a1/

[1] Acerbi E., Bouchitté G., Fonseca I., “Relaxation of convex functionals: the gap problem”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 359–390 | DOI | MR | Zbl

[2] Acerbi E., Fusco N., “A transmission problem in the calculus of variations”, Calc. Var. Partial Differential Equ., 2:1 (1994), 1–16 | DOI | MR | Zbl

[3] Acerbi E., Mingione G., “Regularity results for a class of functionals with non-standard growth”, Arch. Ration. Mech. Anal., 156:2 (2001), 121–140 | DOI | MR | Zbl

[4] Acerbi E., Mingione G., “Regularity results for electrorheological fluids: the stationary case”, C. R. Math. Acad. Sci. Paris, 334:9 (2002), 817–822 | DOI | MR | Zbl

[5] Alkhutov Yu. A., “O gëlderovoi nepreryvnosti $p(x)$-garmonicheskikh funktsii”, Mat. sb., 196:2 (2005), 3–28 | DOI | MR | Zbl

[6] Ambrosio L., Pinamonti A., Speight G., Weighted Sobolev spaces on metric measure spaces, Preprint, 2014, arXiv: 1406.3000

[7] Baroni P., “Riesz potential estimates for a general class of quasilinear equations”, Calc. Var. Partial Differential Equ., 53:3 (2015), 803–846 | DOI | MR | Zbl

[8] Bildhauer M., Fuchs M., “$C^{1,\alpha}$-solutions to non-autonomous anisotropic variational problems”, Calc. Var. Partial Differential Equ., 24:3 (2005), 309–340 | DOI | MR | Zbl

[9] Breit D., “New regularity theorems for non-autonomous variational integrals with $(p,q)$-growth”, Calc. Var. Partial Differential Equ., 44:1–2 (2012), 101–129 | DOI | MR | Zbl

[10] Byun S., Cho Y., Wang L., “Calderón–Zygmund theory for nonlinear elliptic problems with irregular obstacles”, J. Funct. Anal., 263:10 (2012), 3117–3143 | DOI | MR | Zbl

[11] Carozza M., Kristensen J., Passarelli di Napoli A., “Higher differentiability of minimisers of convex variational integrals”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28:3 (2011), 395–411 | DOI | MR | Zbl

[12] Carozza M., Kristensen J., Passarelli di Napoli A., “Regularity of minimizers of autonomous convex variational integrals”, Ann. Scuola Sup. Pisa. Cl. Sci. (5), 13:4 (2014), 1065–1089 | MR | Zbl

[13] Carozza M., Kristensen J., Passarelli di Napoli A., “On the validity of the Euler–Lagrange system”, Commun. Pure Appl. Anal., 14:1 (2015), 51–62 | DOI | MR | Zbl

[14] Chen Y., Levine S., Rao R., “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66:4 (2006), 1383–1406 | DOI | MR | Zbl

[15] Colombo M., Mingione G., “Regularity for double phase variational problems”, Arch. Ration. Mech. Anal., 215:2 (2015), 443–496 | DOI | MR | Zbl

[16] Colombo M., Mingione G., Bounded minimisers of double phase variational integrals (to appear)

[17] Coscia A., Mingione G., “Hölder continuity of the gradient of $p(x)$-harmonic mappings”, C. R. Acad. Sci. Paris Sér. I Math., 328:4 (1999), 363–368 | DOI | MR | Zbl

[18] Cruz-Uribe D., Fiorenza A., Variable Lebesgue spaces, Foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013 | MR | Zbl

[19] Cupini G., Marcellini P., Mascolo E., “Local boundedness of solutions to quasilinear elliptic systems”, Manuscripta Math., 137:3–4 (2012), 287–315 | DOI | MR | Zbl

[20] Cupini G., Marcellini P., Mascolo E., “Existence and regularity for elliptic equations under $p,q$-growth”, Adv. Diffential. Equations, 19:7–8 (2014), 693–724 | MR | Zbl

[21] Cupini G., Marcellini P., Mascolo E., Local boundedness of minimisers with limit growth conditions (to appear)

[22] De Giorgi E., “Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25–43 | MR | Zbl

[23] DiBenedetto E., “$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Anal., 7:8 (1983), 827–850 | DOI | MR | Zbl

[24] Diening L., “Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces”, Bull. Sci. Math., 129:8 (2005), 657–700 | DOI | MR | Zbl

[25] Diening L., Ettwein F., “Fractional estimates for non-differentiable elliptic systems with general growth”, Forum Math., 20:3 (2008), 523–556 | DOI | MR | Zbl

[26] Diening L., Harjulehto P., Hästö P., Růz̆ic̆ka M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[27] Diening L., Stroffolini B., Verde A., “Everywhere regularity of functionals with $\varphi$-growth”, Manuscripta Math., 129:4 (2009), 449–481 | DOI | MR | Zbl

[28] Esposito L., Leonetti F., Mingione G., “Sharp regularity for functionals with $(p,q)$ growth”, J. Differential Equations, 204:1 (2004), 5–55 | DOI | MR | Zbl

[29] Evans L. C., “A new proof of local $C^{1,\alpha}$ regularity for solutions of certain degenerate elliptic p.d.e.”, J. Differential Equations, 45:3 (1982), 356–373 | DOI | MR | Zbl

[30] Fabes E. B., Kenig C. E., Serapioni R., “The local regularity of solutions of degenerate elliptic equations”, Comm. Partial Differential Equations, 7:1 (1982), 77–116 | DOI | MR | Zbl

[31] Fan X., Zhao D., “A class of De Giorgi type and Hölder continuity”, Nonlinear Anal., 36:3 (1999), 295–318 | DOI | MR | Zbl

[32] Fonseca I., Malý J., “Relaxation of multiple integrals below the growth exponent”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14:3 (1997), 309–338 | DOI | MR | Zbl

[33] Fonseca I., Malý J., Mingione G., “Scalar minimisers with fractal singular sets”, Arch. Ration. Mech. Anal., 172:2 (2004), 295–307 | DOI | MR | Zbl

[34] Fusco N., Sbordone C., “Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions”, Comm. Pure Appl. Math., 43:5 (1990), 673–683 | DOI | MR | Zbl

[35] Gehring F. W., “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl

[36] Giaquinta M., Giusti E., “On the regularity of the minima of variational integrals”, Acta Math., 148 (1982), 31–46 | DOI | MR | Zbl

[37] Giusti E., Direct methods in the calculus of variations, World Sci. Publ. Co., Inc., River Edge, NJ, 2003 | MR | Zbl

[38] Iwaniec T., Verde A., “On the operator $\mathcal L(f)=f\log|f|$”, J. Funct. Anal., 169:2 (1999), 391–420 | DOI | MR | Zbl

[39] Kristensen J., “Lower semicontinuity in Sobolev spaces below the growth exponent of the integrand”, Proc. Roy. Soc. Edinburgh Sect. A, 127:4 (1997), 797–817 | DOI | MR | Zbl

[40] Kristensen J., Mingione G., “The singular set of minima of integral functionals”, Arch. Ration. Mech. Anal., 180:3 (2006), 331–398 | DOI | MR | Zbl

[41] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[42] Lewis J. L., “Regularity of the derivatives of solutions to certain degenerate elliptic equations”, Indiana Univ. Math. J., 32:6 (1983), 849–858 | DOI | MR | Zbl

[43] Lieberman G. M., “The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations”, Comm. Partial Differential Equations, 16:2–3 (1991), 311–361 | DOI | MR | Zbl

[44] Lieberman G. M., “Gradient estimates for a class of elliptic systems”, Ann. Mat. Pura Appl. (4), 164 (1993), 103–120 | DOI | MR | Zbl

[45] Lindqvist P., Notes on the $p$-Laplace equation, Report Univ. Jyväskylä, 102, Univ. Jyoäskylä, Jyväskylä, 2006 | MR | Zbl

[46] Maeda F. Y., Mizuta Y., Ohno T., Shimomura T., “Boundedness of maximal operators and Sobolevs inequality on Musielak–Orlicz–Morrey spaces”, Bull. Math. Sci., 137:1 (2013), 76–96 | DOI | MR | Zbl

[47] Manfredi J. J., “Regularity for minima of functionals with $p$-growth”, J. Differential Equations, 76:2 (1988), 203–212 | DOI | MR | Zbl

[48] Manfredi J. J., Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations, PhD.-Thesis, Univ. Washington, St. Louis, 1986 | MR

[49] Marcellini P., “On the definition and the lower semicontinuity of certain quasiconvex integrals”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3:5 (1986), 391–409 | MR | Zbl

[50] Marcellini P., “Regularity of minimisers of integrals of the calculus of variations with non standard growth conditions”, Arch. Ration. Mech. Anal., 105:3 (1989), 267–284 | DOI | MR | Zbl

[51] Marcellini P., “Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions”, J. Differential Equations, 90:1 (1991), 1–30 | DOI | MR | Zbl

[52] Mingione G., Mucci D., “Integral functionals and the gap problem: sharp bounds for relaxation and energy concentration”, SIAM J. Math. Anal., 36:5 (2005), 1540–1579 | DOI | MR | Zbl

[53] Mingione G., Siepe F., “Full $C^{1,\alpha}$-regularity for minimisers of integral functionals with $L\log L$-growth”, Z. Anal. Anwendungen, 18:4 (1999), 1083–1100 | DOI | MR | Zbl

[54] Schmidt T., “Regularity of minimisers of $W^{1,p}$-quasiconvex variational integrals with $(p,q)$-growth”, Calc. Var. Partial Differential Equ., 32:1 (2008), 1–24 | DOI | MR | Zbl

[55] Schmidt T., “Regularity of relaxed minimisers of quasiconvex variational integrals with $(p,q)$-growth”, Arch. Ration. Mech. Anal., 193:2 (2009), 311–337 | DOI | MR | Zbl

[56] Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | MR | Zbl

[57] Růz̆ic̆ka M., Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Math., 1748, Springer-Verlag, Berlin, 2000 | MR

[58] Surnachëv M. D., “O plotnosti gladkikh funktsii v vesovom sobolevskom prostranstve s peremennym pokazatelem”, Dokl. RAN, 455:1 (2014), 18–22 | DOI | MR | Zbl

[59] Uhlenbeck K., “Regularity for a class of non-linear elliptic systems”, Acta Math., 138:3–4 (1977), 219–240 | DOI | MR | Zbl

[60] Uraltseva N. N., “Vyrozhdayuschiesya kvazilineinye ellipticheskie sistemy”, Zap. nauch. semin. LOMI, 7, 1968, 184–222 | MR | Zbl

[61] Uraltseva N. N., Urdaletova A. B., “Ogranichennost gradientov obobschennykh reshenii vyrozhdayuschikhsya neravnomerno ellipticheskikh kvazilineinykh uravnenii”, Vestn. Leningrad. un-ta, Ser. mat., mekh., astronom., 1983, no. 19, 50–56 | MR

[62] Zhikov V. V., “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. mat., 50:4 (1986), 675–710 | MR | Zbl

[63] Zhikov V. V., “Lavrentiev phenomenon and homogenization for some variational problems”, C. R. Acad. Sci. Paris Sér. I Math., 316:5 (1993), 435–439 | MR | Zbl

[64] Zhikov V. V., “On Lavrentiev's phenomenon”, Russian J. Math. Phys., 3:2 (1995), 249–269 | MR | Zbl

[65] Zhikov V. V., “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl

[66] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1983 | MR

[67] Zhikov V. V., “O plotnosti gladkikh funktsii v vesovom sobolevskom prostranstve”, Dokl. RAN, 453:3 (2013), 247–251 | DOI | MR | Zbl