Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_3_a1, author = {P. Baroni and M. Colombo and G. Mingione}, title = {Nonautonomous functionals, borderline cases and related function classes}, journal = {Algebra i analiz}, pages = {6--50}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a1/} }
P. Baroni; M. Colombo; G. Mingione. Nonautonomous functionals, borderline cases and related function classes. Algebra i analiz, Tome 27 (2015) no. 3, pp. 6-50. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a1/
[1] Acerbi E., Bouchitté G., Fonseca I., “Relaxation of convex functionals: the gap problem”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 359–390 | DOI | MR | Zbl
[2] Acerbi E., Fusco N., “A transmission problem in the calculus of variations”, Calc. Var. Partial Differential Equ., 2:1 (1994), 1–16 | DOI | MR | Zbl
[3] Acerbi E., Mingione G., “Regularity results for a class of functionals with non-standard growth”, Arch. Ration. Mech. Anal., 156:2 (2001), 121–140 | DOI | MR | Zbl
[4] Acerbi E., Mingione G., “Regularity results for electrorheological fluids: the stationary case”, C. R. Math. Acad. Sci. Paris, 334:9 (2002), 817–822 | DOI | MR | Zbl
[5] Alkhutov Yu. A., “O gëlderovoi nepreryvnosti $p(x)$-garmonicheskikh funktsii”, Mat. sb., 196:2 (2005), 3–28 | DOI | MR | Zbl
[6] Ambrosio L., Pinamonti A., Speight G., Weighted Sobolev spaces on metric measure spaces, Preprint, 2014, arXiv: 1406.3000
[7] Baroni P., “Riesz potential estimates for a general class of quasilinear equations”, Calc. Var. Partial Differential Equ., 53:3 (2015), 803–846 | DOI | MR | Zbl
[8] Bildhauer M., Fuchs M., “$C^{1,\alpha}$-solutions to non-autonomous anisotropic variational problems”, Calc. Var. Partial Differential Equ., 24:3 (2005), 309–340 | DOI | MR | Zbl
[9] Breit D., “New regularity theorems for non-autonomous variational integrals with $(p,q)$-growth”, Calc. Var. Partial Differential Equ., 44:1–2 (2012), 101–129 | DOI | MR | Zbl
[10] Byun S., Cho Y., Wang L., “Calderón–Zygmund theory for nonlinear elliptic problems with irregular obstacles”, J. Funct. Anal., 263:10 (2012), 3117–3143 | DOI | MR | Zbl
[11] Carozza M., Kristensen J., Passarelli di Napoli A., “Higher differentiability of minimisers of convex variational integrals”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28:3 (2011), 395–411 | DOI | MR | Zbl
[12] Carozza M., Kristensen J., Passarelli di Napoli A., “Regularity of minimizers of autonomous convex variational integrals”, Ann. Scuola Sup. Pisa. Cl. Sci. (5), 13:4 (2014), 1065–1089 | MR | Zbl
[13] Carozza M., Kristensen J., Passarelli di Napoli A., “On the validity of the Euler–Lagrange system”, Commun. Pure Appl. Anal., 14:1 (2015), 51–62 | DOI | MR | Zbl
[14] Chen Y., Levine S., Rao R., “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66:4 (2006), 1383–1406 | DOI | MR | Zbl
[15] Colombo M., Mingione G., “Regularity for double phase variational problems”, Arch. Ration. Mech. Anal., 215:2 (2015), 443–496 | DOI | MR | Zbl
[16] Colombo M., Mingione G., Bounded minimisers of double phase variational integrals (to appear)
[17] Coscia A., Mingione G., “Hölder continuity of the gradient of $p(x)$-harmonic mappings”, C. R. Acad. Sci. Paris Sér. I Math., 328:4 (1999), 363–368 | DOI | MR | Zbl
[18] Cruz-Uribe D., Fiorenza A., Variable Lebesgue spaces, Foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013 | MR | Zbl
[19] Cupini G., Marcellini P., Mascolo E., “Local boundedness of solutions to quasilinear elliptic systems”, Manuscripta Math., 137:3–4 (2012), 287–315 | DOI | MR | Zbl
[20] Cupini G., Marcellini P., Mascolo E., “Existence and regularity for elliptic equations under $p,q$-growth”, Adv. Diffential. Equations, 19:7–8 (2014), 693–724 | MR | Zbl
[21] Cupini G., Marcellini P., Mascolo E., Local boundedness of minimisers with limit growth conditions (to appear)
[22] De Giorgi E., “Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25–43 | MR | Zbl
[23] DiBenedetto E., “$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Anal., 7:8 (1983), 827–850 | DOI | MR | Zbl
[24] Diening L., “Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces”, Bull. Sci. Math., 129:8 (2005), 657–700 | DOI | MR | Zbl
[25] Diening L., Ettwein F., “Fractional estimates for non-differentiable elliptic systems with general growth”, Forum Math., 20:3 (2008), 523–556 | DOI | MR | Zbl
[26] Diening L., Harjulehto P., Hästö P., Růz̆ic̆ka M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011 | DOI | MR | Zbl
[27] Diening L., Stroffolini B., Verde A., “Everywhere regularity of functionals with $\varphi$-growth”, Manuscripta Math., 129:4 (2009), 449–481 | DOI | MR | Zbl
[28] Esposito L., Leonetti F., Mingione G., “Sharp regularity for functionals with $(p,q)$ growth”, J. Differential Equations, 204:1 (2004), 5–55 | DOI | MR | Zbl
[29] Evans L. C., “A new proof of local $C^{1,\alpha}$ regularity for solutions of certain degenerate elliptic p.d.e.”, J. Differential Equations, 45:3 (1982), 356–373 | DOI | MR | Zbl
[30] Fabes E. B., Kenig C. E., Serapioni R., “The local regularity of solutions of degenerate elliptic equations”, Comm. Partial Differential Equations, 7:1 (1982), 77–116 | DOI | MR | Zbl
[31] Fan X., Zhao D., “A class of De Giorgi type and Hölder continuity”, Nonlinear Anal., 36:3 (1999), 295–318 | DOI | MR | Zbl
[32] Fonseca I., Malý J., “Relaxation of multiple integrals below the growth exponent”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14:3 (1997), 309–338 | DOI | MR | Zbl
[33] Fonseca I., Malý J., Mingione G., “Scalar minimisers with fractal singular sets”, Arch. Ration. Mech. Anal., 172:2 (2004), 295–307 | DOI | MR | Zbl
[34] Fusco N., Sbordone C., “Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions”, Comm. Pure Appl. Math., 43:5 (1990), 673–683 | DOI | MR | Zbl
[35] Gehring F. W., “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl
[36] Giaquinta M., Giusti E., “On the regularity of the minima of variational integrals”, Acta Math., 148 (1982), 31–46 | DOI | MR | Zbl
[37] Giusti E., Direct methods in the calculus of variations, World Sci. Publ. Co., Inc., River Edge, NJ, 2003 | MR | Zbl
[38] Iwaniec T., Verde A., “On the operator $\mathcal L(f)=f\log|f|$”, J. Funct. Anal., 169:2 (1999), 391–420 | DOI | MR | Zbl
[39] Kristensen J., “Lower semicontinuity in Sobolev spaces below the growth exponent of the integrand”, Proc. Roy. Soc. Edinburgh Sect. A, 127:4 (1997), 797–817 | DOI | MR | Zbl
[40] Kristensen J., Mingione G., “The singular set of minima of integral functionals”, Arch. Ration. Mech. Anal., 180:3 (2006), 331–398 | DOI | MR | Zbl
[41] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[42] Lewis J. L., “Regularity of the derivatives of solutions to certain degenerate elliptic equations”, Indiana Univ. Math. J., 32:6 (1983), 849–858 | DOI | MR | Zbl
[43] Lieberman G. M., “The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations”, Comm. Partial Differential Equations, 16:2–3 (1991), 311–361 | DOI | MR | Zbl
[44] Lieberman G. M., “Gradient estimates for a class of elliptic systems”, Ann. Mat. Pura Appl. (4), 164 (1993), 103–120 | DOI | MR | Zbl
[45] Lindqvist P., Notes on the $p$-Laplace equation, Report Univ. Jyväskylä, 102, Univ. Jyoäskylä, Jyväskylä, 2006 | MR | Zbl
[46] Maeda F. Y., Mizuta Y., Ohno T., Shimomura T., “Boundedness of maximal operators and Sobolevs inequality on Musielak–Orlicz–Morrey spaces”, Bull. Math. Sci., 137:1 (2013), 76–96 | DOI | MR | Zbl
[47] Manfredi J. J., “Regularity for minima of functionals with $p$-growth”, J. Differential Equations, 76:2 (1988), 203–212 | DOI | MR | Zbl
[48] Manfredi J. J., Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations, PhD.-Thesis, Univ. Washington, St. Louis, 1986 | MR
[49] Marcellini P., “On the definition and the lower semicontinuity of certain quasiconvex integrals”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3:5 (1986), 391–409 | MR | Zbl
[50] Marcellini P., “Regularity of minimisers of integrals of the calculus of variations with non standard growth conditions”, Arch. Ration. Mech. Anal., 105:3 (1989), 267–284 | DOI | MR | Zbl
[51] Marcellini P., “Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions”, J. Differential Equations, 90:1 (1991), 1–30 | DOI | MR | Zbl
[52] Mingione G., Mucci D., “Integral functionals and the gap problem: sharp bounds for relaxation and energy concentration”, SIAM J. Math. Anal., 36:5 (2005), 1540–1579 | DOI | MR | Zbl
[53] Mingione G., Siepe F., “Full $C^{1,\alpha}$-regularity for minimisers of integral functionals with $L\log L$-growth”, Z. Anal. Anwendungen, 18:4 (1999), 1083–1100 | DOI | MR | Zbl
[54] Schmidt T., “Regularity of minimisers of $W^{1,p}$-quasiconvex variational integrals with $(p,q)$-growth”, Calc. Var. Partial Differential Equ., 32:1 (2008), 1–24 | DOI | MR | Zbl
[55] Schmidt T., “Regularity of relaxed minimisers of quasiconvex variational integrals with $(p,q)$-growth”, Arch. Ration. Mech. Anal., 193:2 (2009), 311–337 | DOI | MR | Zbl
[56] Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | MR | Zbl
[57] Růz̆ic̆ka M., Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Math., 1748, Springer-Verlag, Berlin, 2000 | MR
[58] Surnachëv M. D., “O plotnosti gladkikh funktsii v vesovom sobolevskom prostranstve s peremennym pokazatelem”, Dokl. RAN, 455:1 (2014), 18–22 | DOI | MR | Zbl
[59] Uhlenbeck K., “Regularity for a class of non-linear elliptic systems”, Acta Math., 138:3–4 (1977), 219–240 | DOI | MR | Zbl
[60] Uraltseva N. N., “Vyrozhdayuschiesya kvazilineinye ellipticheskie sistemy”, Zap. nauch. semin. LOMI, 7, 1968, 184–222 | MR | Zbl
[61] Uraltseva N. N., Urdaletova A. B., “Ogranichennost gradientov obobschennykh reshenii vyrozhdayuschikhsya neravnomerno ellipticheskikh kvazilineinykh uravnenii”, Vestn. Leningrad. un-ta, Ser. mat., mekh., astronom., 1983, no. 19, 50–56 | MR
[62] Zhikov V. V., “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. mat., 50:4 (1986), 675–710 | MR | Zbl
[63] Zhikov V. V., “Lavrentiev phenomenon and homogenization for some variational problems”, C. R. Acad. Sci. Paris Sér. I Math., 316:5 (1993), 435–439 | MR | Zbl
[64] Zhikov V. V., “On Lavrentiev's phenomenon”, Russian J. Math. Phys., 3:2 (1995), 249–269 | MR | Zbl
[65] Zhikov V. V., “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl
[66] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1983 | MR
[67] Zhikov V. V., “O plotnosti gladkikh funktsii v vesovom sobolevskom prostranstve”, Dokl. RAN, 453:3 (2013), 247–251 | DOI | MR | Zbl