Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_2_a0, author = {N. V. Proskurin}, title = {On the zeros of the zeta-function of the quadratic form $x^2+y^2+z^2$}, journal = {Algebra i analiz}, pages = {1--19}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_2_a0/} }
N. V. Proskurin. On the zeros of the zeta-function of the quadratic form $x^2+y^2+z^2$. Algebra i analiz, Tome 27 (2015) no. 2, pp. 1-19. http://geodesic.mathdoc.fr/item/AA_2015_27_2_a0/
[1] Proskurin N. V., “O kubicheskoi $L$-funktsii”, Algebra i analiz, 24:2 (2012), 230–256 | MR | Zbl
[2] Proskurin N. V., “O nulyakh dzeta-funktsii reshëtki Licha”, Zap. nauch. semin. POMI, 404, 2012, 214–221 | MR
[3] Serre J.-P., Cours d'arithmétique, Pres. Univ. France, Paris, 1970 | MR | Zbl
[4] Hecke E., “Über Modulfunktionen und Dirichletschen Reihen mit Eulerscher Producten-twicklung. I”, Math. Ann., 114 (1937), 1–28 | DOI | MR | Zbl
[5] Shimura G., “On modular forms of half-integral weight”, Ann. of Math. (2), 97 (1973), 440–481 | DOI | MR | Zbl
[6] Siegel C. L., “Contributions to the theory of the Dirichlet $L$-series and the Epstein zeta-functions”, Ann. of Math. (2), 44:2 (1943), 143–172 | DOI | MR | Zbl
[7] Ramachandra K., Sankaranarayanan A., “Hardy's theorem for zeta-functions of quadratic forms”, Proc. Indian Acad. Sci., 106:3 (1996), 217–226 | DOI | MR | Zbl
[8] Bombieri E., Hejhal D., “On the zeros of Epstein zeta functions”, C. R. Acad. Sci. Paris Ser. I Math., 304:9 (1987), 213–217 | MR | Zbl
[9] Hejhal D., “Zeros of Epstein zeta functions and supercomputers”, Proc. Intern. Congress of Math. (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 1362–1384 | MR
[10] Titchmarsh E. C., The theory of functions, Oxford Univ. Press, 1939 | MR | Zbl
[11] Müller W., “The mean square of Dirichlet series associated with automorphic forms”, Monatsh. Math., 113:2 (1992), 121–159 | DOI | MR
[12] Fomenko O. M., “O dzeta-funktsii Epshteina. I”, Zap. nauch. semin. POMI, 286, 2002, 169–178 | MR | Zbl
[13] Fomenko O. M., “O dzeta-funktsii Epshteina. II”, Zap. nauch. semin. POMI, 371, 2009, 157–170 | MR | Zbl
[14] Proskurin N. V., “O nulyakh dzeta-funktsii odnoi ternarnoi kvadratichnoi formy”, Zap. nauch. semin. POMI, 392, 2011, 159–162 | MR
[15] Lavrik A. F., “O funktsionalnykh uravneniyakh funktsii Dirikhle”, Izv. AN SSSR. Ser. mat., 31:2 (1967), 431–442 | MR | Zbl
[16] Lavrik A. F., “Priblizhennye funktsionalnye uravneniya funktsii Dirikhle”, Izv. AN SSSR. Ser. mat., 32:1 (1968), 134–185 | MR | Zbl
[17] Proskurin N. V., “O probleme vychisleniya znachenii $L$-funktsii”, Zap. nauch. semin. POMI, 373, 2009, 273–279
[18] Chowla T., Selberg A., “On Epstein's zeta-function”, J. Reine Angew. Math., 227 (1967), 86–110 | MR | Zbl
[19] Odlyzko A., “New analytic algorithms in number theory”, Proc. Intern. Congress of Math. (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 466–475 | MR
[20] Odlyzko A., “The $10^{22}$-nd zero of the Riemann zeta function”, Dynamical, Spectral, and Arithmetic Zeta Functions, Contemp. Math., 290, Amer. Math. Soc., Providence, RI, 2001, 139–144 | DOI | MR | Zbl
[21] Strömbergsson A., Studies in the analitic and spectral theory of automorphic forms, Uppsala Diss. Math., No 17, Uppsala Univ., 2001 | MR | Zbl
[22] Rubinstein M., “Computational methods and experiments in analytic number theory”, Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., 322, Cambridge Univ. Press, 2005, 425–506 | MR | Zbl
[23] Olver F. W. J., Asymptotics and special functions, Completer Science and Applied Mathematics, Acad. Press, New York, 1974 | MR | Zbl
[24] Oberhettinger F., Erdelyi A., Higher transcendental functions, v. II, Mc Graw-Hill Book Company, Inc., 1953