On the Cheeger--M\"uller theorem for an even-dimensional cone
Algebra i analiz, Tome 27 (2015) no. 1, pp. 194-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

Equality is proved for the $L^2$-analytic torsion and the intersection R-torsion of the even-dimensional finite metric cone over an odd-dimensional compact manifold.
Keywords: analytic torsion, pseudomanifold, De Rham metric, Reidemeister basis, fundamental group, Hodge operator, zeta function, singular locus.
@article{AA_2015_27_1_a7,
     author = {L. Hartmann and M. Spreafico},
     title = {On the {Cheeger--M\"uller} theorem for an even-dimensional cone},
     journal = {Algebra i analiz},
     pages = {194--217},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_1_a7/}
}
TY  - JOUR
AU  - L. Hartmann
AU  - M. Spreafico
TI  - On the Cheeger--M\"uller theorem for an even-dimensional cone
JO  - Algebra i analiz
PY  - 2015
SP  - 194
EP  - 217
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_1_a7/
LA  - en
ID  - AA_2015_27_1_a7
ER  - 
%0 Journal Article
%A L. Hartmann
%A M. Spreafico
%T On the Cheeger--M\"uller theorem for an even-dimensional cone
%J Algebra i analiz
%D 2015
%P 194-217
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_1_a7/
%G en
%F AA_2015_27_1_a7
L. Hartmann; M. Spreafico. On the Cheeger--M\"uller theorem for an even-dimensional cone. Algebra i analiz, Tome 27 (2015) no. 1, pp. 194-217. http://geodesic.mathdoc.fr/item/AA_2015_27_1_a7/

[1] Bismut J.-M., Zhang W., “An extension of a theorem by Cheeger and Müller”, Astérisque, 205 (1992), 1–235 | MR

[2] Brüning J., Ma X., “An anomaly formula for Ray–Singer metrics on manifolds with boundary”, Geom. Funct. Anal., 16:4 (2006), 767–837 | DOI | MR | Zbl

[3] Brüning J., Ma X., “On the gluing formula for the analytic torsion”, Math. Z., 273:3–4 (2013), 1085–1117 | DOI | MR | Zbl

[4] Cheeger J., “Analytic torsion and the heat equation”, Ann. of Math., 109:2 (1979), 259–322 | DOI | MR | Zbl

[5] Cheeger J., “Spectral geometry of singular Riemannian spaces”, J. Differential Geom., 18:4 (1983), 575–657 | MR | Zbl

[6] Cheeger J., On the Hodge theory of Riemannian pseudomanifolds, Proc. Sympos. Pure Math., 36, Amer. Math. Soc., Providence, RI, 1980 | MR

[7] Dar A., “Intersection R-torsion and the analytic torsion for pseudomanifolds”, Math. Z., 194:2 (1987), 193–216 | DOI | MR | Zbl

[8] Dar A., “Intersection Whitehead torsion and the s-cobordism theorem for pseudomanifolds”, Math. Z., 199:2 (1988), 171–179 | DOI | MR

[9] Farber M., Turaev V., “Poincaré–Reidemeister metric, Euler structures, and torsion”, J. Reine Angew. Math., 520 (2000), 195–225 | MR | Zbl

[10] Goresky M., MacPherson R., “Intersection homology theory”, Topology, 19:2 (1980), 135–162 | DOI | MR

[11] Goresky M., MacPherson R., “Intersection homology. II”, Invent. Math., 72:1 (1983), 77–129 | DOI | MR | Zbl

[12] Goresky M., MacPherson R., “Morse theory and intersection homology theory”, Astérisque, 101–102 (1983), 135–192 | MR | Zbl

[13] Haefliger A., Introduction to piecewise linear intersection homology, Intersection cohomology, Progr. Math., 50, Birkhäuser, Boston, MA, 1984 | MR

[14] Hartmann L., Melo T., Spreafico M., “The analytic torsion of a disc”, Ann. Global Anal. Geom., 42:1 (2012), 29–59 | DOI | MR | Zbl

[15] Hartmann L., Spreafico M., “The analytic torsion of a cone over a sphere”, J. Math. Pures Appl., 93:4 (2010), 408–435 | DOI | MR | Zbl

[16] Hartmann L., Spreafico M., “The analytic torsion of the cone over an odd dimensional manifold”, J. Geom. Phys., 61:3 (2011), 624–657 | DOI | MR | Zbl

[17] Hartmann L., Spreafico M., “R-torsion and analytic torsion of a conical frustum”, J. Gökova Geom. Topol., 6 (2012), 28–57 | MR | Zbl

[18] Hartmann L., Spreafico M., The analytic torsion of the finite metric cone over a compact manifold, arXiv: 1308.5455

[19] Kirwan F., Woolf J., An introduction to intersection homology theory, Chapman Hall/CRC, Boca Raton, FL, 2006 | MR | Zbl

[20] Lesch M., “A gluing formula for the analytic torsion on singular spaces”, Anal. PDE, 6:1 (2013), 221–256 | DOI | MR | Zbl

[21] Lück W., “Analytic and topological torsion for manifolds with boundary and symmetry”, J. Differential Geom., 37:2 (1993), 263–322 | MR | Zbl

[22] MacPherson R., Intersection homology and perverse sheafs, Colloquium Lecture Notes distributed by the AMS, 1991

[23] Milnor J., “Whitehead torsion”, Bull. Amer. Math. Soc., 72 (1966), 358–426 | DOI | MR | Zbl

[24] Müller W., “Analytic torsion and R-torsion of Riemannian manifolds”, Adv. Math., 28:3 (1978), 233–305 | DOI | MR | Zbl

[25] Müller W., Vertman B., “The metric anomaly of analytic torsion on manifolds with conical singularities”, Comm. Partial Differential Equations, 39:1 (2014), 146–191 | DOI | MR | Zbl

[26] Nagase M., “De Rham–Hodge theory on a manifold with cone-like singularities”, Kodai Math. J., 5:1 (1982), 38–64 | DOI | MR | Zbl

[27] Kvillen D., “Determinanty operatorov Koshi–Rimana na rimanovykh poverkhnostyakh”, Funkts. anal. i ego pril., 19:1 (1985), 37–41 | MR | Zbl

[28] Ray D. B., Singer I. M., “$R$-torsion and the Laplacian on Riemannian manifolds”, Adv. Math., 7 (1971), 145–210 | DOI | MR | Zbl

[29] Spreafico M., “Zeta function and regularized determinant on a disc and on a cone”, J. Geom. Phys., 54:3 (2005), 355–371 | DOI | MR | Zbl

[30] Spreafico M., “Zeta invariants for sequences of spectral type, special functions and the Lerch formula”, Proc. Roy. Soc. Edinburgh Sect. A, 136:4 (2006), 863–887 | DOI | MR | Zbl

[31] Spreafico M., “Zeta invariants for Dirichlet series”, Pacific. J. Math., 224:1 (2006), 185–200 | DOI | MR | Zbl

[32] Spreafico M., “Zeta determinant for double sequences of spectral type”, Proc. Amer. Math. Soc., 140:6 (2012), 1881–1896 | DOI | MR | Zbl

[33] Youssin B., “$L^p$ cohomology of cones and horns”, J. Differential Geom., 39:3 (1994), 559–603 | MR | Zbl

[34] Vertman B., “The metric anomaly of analytic torsion at the boundary of an even dimensional cone”, Ann. Global Anal. Geom., 41:1 (2012), 61–90 | DOI | MR | Zbl

[35] Vishik S. M., “Generalized Ray–Singer conjecture. I. A manifold with a smooth boundary”, Comm. Math. Phys., 167:1 (1995), 1–102 | DOI | MR | Zbl