Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_1_a7, author = {L. Hartmann and M. Spreafico}, title = {On the {Cheeger--M\"uller} theorem for an even-dimensional cone}, journal = {Algebra i analiz}, pages = {194--217}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_1_a7/} }
L. Hartmann; M. Spreafico. On the Cheeger--M\"uller theorem for an even-dimensional cone. Algebra i analiz, Tome 27 (2015) no. 1, pp. 194-217. http://geodesic.mathdoc.fr/item/AA_2015_27_1_a7/
[1] Bismut J.-M., Zhang W., “An extension of a theorem by Cheeger and Müller”, Astérisque, 205 (1992), 1–235 | MR
[2] Brüning J., Ma X., “An anomaly formula for Ray–Singer metrics on manifolds with boundary”, Geom. Funct. Anal., 16:4 (2006), 767–837 | DOI | MR | Zbl
[3] Brüning J., Ma X., “On the gluing formula for the analytic torsion”, Math. Z., 273:3–4 (2013), 1085–1117 | DOI | MR | Zbl
[4] Cheeger J., “Analytic torsion and the heat equation”, Ann. of Math., 109:2 (1979), 259–322 | DOI | MR | Zbl
[5] Cheeger J., “Spectral geometry of singular Riemannian spaces”, J. Differential Geom., 18:4 (1983), 575–657 | MR | Zbl
[6] Cheeger J., On the Hodge theory of Riemannian pseudomanifolds, Proc. Sympos. Pure Math., 36, Amer. Math. Soc., Providence, RI, 1980 | MR
[7] Dar A., “Intersection R-torsion and the analytic torsion for pseudomanifolds”, Math. Z., 194:2 (1987), 193–216 | DOI | MR | Zbl
[8] Dar A., “Intersection Whitehead torsion and the s-cobordism theorem for pseudomanifolds”, Math. Z., 199:2 (1988), 171–179 | DOI | MR
[9] Farber M., Turaev V., “Poincaré–Reidemeister metric, Euler structures, and torsion”, J. Reine Angew. Math., 520 (2000), 195–225 | MR | Zbl
[10] Goresky M., MacPherson R., “Intersection homology theory”, Topology, 19:2 (1980), 135–162 | DOI | MR
[11] Goresky M., MacPherson R., “Intersection homology. II”, Invent. Math., 72:1 (1983), 77–129 | DOI | MR | Zbl
[12] Goresky M., MacPherson R., “Morse theory and intersection homology theory”, Astérisque, 101–102 (1983), 135–192 | MR | Zbl
[13] Haefliger A., Introduction to piecewise linear intersection homology, Intersection cohomology, Progr. Math., 50, Birkhäuser, Boston, MA, 1984 | MR
[14] Hartmann L., Melo T., Spreafico M., “The analytic torsion of a disc”, Ann. Global Anal. Geom., 42:1 (2012), 29–59 | DOI | MR | Zbl
[15] Hartmann L., Spreafico M., “The analytic torsion of a cone over a sphere”, J. Math. Pures Appl., 93:4 (2010), 408–435 | DOI | MR | Zbl
[16] Hartmann L., Spreafico M., “The analytic torsion of the cone over an odd dimensional manifold”, J. Geom. Phys., 61:3 (2011), 624–657 | DOI | MR | Zbl
[17] Hartmann L., Spreafico M., “R-torsion and analytic torsion of a conical frustum”, J. Gökova Geom. Topol., 6 (2012), 28–57 | MR | Zbl
[18] Hartmann L., Spreafico M., The analytic torsion of the finite metric cone over a compact manifold, arXiv: 1308.5455
[19] Kirwan F., Woolf J., An introduction to intersection homology theory, Chapman Hall/CRC, Boca Raton, FL, 2006 | MR | Zbl
[20] Lesch M., “A gluing formula for the analytic torsion on singular spaces”, Anal. PDE, 6:1 (2013), 221–256 | DOI | MR | Zbl
[21] Lück W., “Analytic and topological torsion for manifolds with boundary and symmetry”, J. Differential Geom., 37:2 (1993), 263–322 | MR | Zbl
[22] MacPherson R., Intersection homology and perverse sheafs, Colloquium Lecture Notes distributed by the AMS, 1991
[23] Milnor J., “Whitehead torsion”, Bull. Amer. Math. Soc., 72 (1966), 358–426 | DOI | MR | Zbl
[24] Müller W., “Analytic torsion and R-torsion of Riemannian manifolds”, Adv. Math., 28:3 (1978), 233–305 | DOI | MR | Zbl
[25] Müller W., Vertman B., “The metric anomaly of analytic torsion on manifolds with conical singularities”, Comm. Partial Differential Equations, 39:1 (2014), 146–191 | DOI | MR | Zbl
[26] Nagase M., “De Rham–Hodge theory on a manifold with cone-like singularities”, Kodai Math. J., 5:1 (1982), 38–64 | DOI | MR | Zbl
[27] Kvillen D., “Determinanty operatorov Koshi–Rimana na rimanovykh poverkhnostyakh”, Funkts. anal. i ego pril., 19:1 (1985), 37–41 | MR | Zbl
[28] Ray D. B., Singer I. M., “$R$-torsion and the Laplacian on Riemannian manifolds”, Adv. Math., 7 (1971), 145–210 | DOI | MR | Zbl
[29] Spreafico M., “Zeta function and regularized determinant on a disc and on a cone”, J. Geom. Phys., 54:3 (2005), 355–371 | DOI | MR | Zbl
[30] Spreafico M., “Zeta invariants for sequences of spectral type, special functions and the Lerch formula”, Proc. Roy. Soc. Edinburgh Sect. A, 136:4 (2006), 863–887 | DOI | MR | Zbl
[31] Spreafico M., “Zeta invariants for Dirichlet series”, Pacific. J. Math., 224:1 (2006), 185–200 | DOI | MR | Zbl
[32] Spreafico M., “Zeta determinant for double sequences of spectral type”, Proc. Amer. Math. Soc., 140:6 (2012), 1881–1896 | DOI | MR | Zbl
[33] Youssin B., “$L^p$ cohomology of cones and horns”, J. Differential Geom., 39:3 (1994), 559–603 | MR | Zbl
[34] Vertman B., “The metric anomaly of analytic torsion at the boundary of an even dimensional cone”, Ann. Global Anal. Geom., 41:1 (2012), 61–90 | DOI | MR | Zbl
[35] Vishik S. M., “Generalized Ray–Singer conjecture. I. A manifold with a smooth boundary”, Comm. Math. Phys., 167:1 (1995), 1–102 | DOI | MR | Zbl