Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_6_a7, author = {R. R. Salimov}, title = {Lower estimates of $p$-modulus and mappings of {Sobolev's} class}, journal = {Algebra i analiz}, pages = {143--171}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_6_a7/} }
R. R. Salimov. Lower estimates of $p$-modulus and mappings of Sobolev's class. Algebra i analiz, Tome 26 (2014) no. 6, pp. 143-171. http://geodesic.mathdoc.fr/item/AA_2014_26_6_a7/
[1] Lavrentev M. A., Variatsionnyi metod v kraevykh zadachakh dlya sistem uravnenii ellipticheskogo tipa, Izd-vo AN SSSR, M., 1962 | MR
[2] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York etc., 2009 | MR | Zbl
[3] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl
[4] Gehring F. W., “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl
[5] Ryazanov V. I., Sevostyanov E. A., “Ravnostepenno nepreryvnye klassy koltsevykh $Q$-gomeomorfizmov”, Sib. mat. zh., 48:6 (2007), 1361–1376 | MR | Zbl
[6] Salimov R. R., “Absolyutnaya nepreryvnost na liniyakh i differentsiruemost odnogo obobscheniya kvazikonformnykh otobrazhenii”, Izv. RAN. Ser. mat., 72:5 (2008), 141–148 | DOI | MR | Zbl
[7] Salimov R. R., “Ob otsenke mery obraza shara”, Sib. mat. zh., 53:4 (2012), 920–930 | MR | Zbl
[8] Salimov R. R., “On finitely Lipschitz space mappings”, Sib. elektron. mat. izv., 8 (2011), 284–295 | MR
[9] Salimov R. R., “O lipshitsevosti odnogo klassa otobrazhenii”, Mat. zametki, 94:4 (2013), 591–599 | DOI | Zbl
[10] Salimov R. R., Sevostyanov E. A., “Teoriya koltsevykh $Q$-otobrazhenii v geometricheskoi teorii funktsii”, Mat. sb., 201:6 (2010), 131–158 | DOI | MR | Zbl
[11] Sevostyanov E. A., “K teorii ustraneniya osobennostei otobrazhenii s neogranichennoi kharakteristikoi kvazikonformnosti”, Izv. RAN. Ser. mat., 74:1 (2010), 159–174 | DOI | MR | Zbl
[12] Sevostyanov E. A., “O prostranstvennykh otobrazheniyakh s integralnymi ogranicheniyami na kharakteristiku”, Algebra i analiz, 24:1 (2012), 131–156 | MR | Zbl
[13] Sevostyanov E. A., “O tochkakh vetvleniya otobrazhenii s neogranichennoi kharakteristikoi kvazikonformnosti”, Sib. mat. zh., 51:5 (2010), 1129–1146 | MR | Zbl
[14] Golberg A., “Homeomorphisms with integrally restricted moduli”, Complex Analysis and Dynamical Systems, Pt. 1, v. IV, Contemp. Math., 553, Amer. Math. Soc., Providence, RI, 2011, 83–98 | DOI | MR | Zbl
[15] Kruglikov V. I., “Emkosti kondensatorov i prostranstvennye otobrazheniya, kvazikonformnye v srednem”, Mat. sb., 130(172):2 (1986), 185–206 | MR | Zbl
[16] Vodopyanov S. K., Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Soboleva”, Izv. vuzov. Mat., 2002, no. 10, 11–33 | MR | Zbl
[17] Vodopyanov S. K., Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Lebega i differentsiruemost kvaziadditivnykh funktsii mnozhestva”, Vladikavkaz. mat. zh., 4:1 (2002), 11–33 | MR | Zbl
[18] Vodopyanov S. K., “Opisanie operatorov superpozitsii prostranstv Soboleva”, Dokl. RAN, 400:1 (2005), 11–15 | MR
[19] Vodopyanov S. K., “Composition operators on Sobolev spaces”, Complex Analysis and Dynamical Systems, v. II, Contemp. Math., 382, Amer. Math. Soc., Providence, RI, 2005, 401–415 | DOI | MR | Zbl
[20] Kovtonyuk D. A., Petkov I. V., Ryazanov V. I., Salimov R. R., “Granichnoe povedenie i zadacha Dirikhle dlya uravnenii Beltrami”, Algebra i analiz, 25:4 (2013), 101–124 | MR
[21] Lomako T., Salimov R., Sevost'yanov E., “On equicontinuity of solutions to the Beltrami equations”, Ann. Univ. Buchar. Math. Ser., 1(LIX):2 (2010), 263–274 | MR | Zbl
[22] Ryazanov V. I., Salimov R. R., Srebro U., Yakubov E., “On boundary value problems for the Beltrami equations”, Complex Analysis and Dynamical Systems, v. IV, Contemp. Math., 591, Amer. Math. Soc., Providence, RI, 211–242 | DOI | MR
[23] Afanaseva E. S., Ryazanov V. I., Salimov R. R., “Ob otobrazheniyakh v klassakh Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. mat. vestn., 8:3 (2011), 319–342
[24] Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevostyanov E. A., “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 50–102 | MR
[25] Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevost'yanov E. A., “On mappings in the Orlicz–Sobolev classes”, Ann. Univ. Bucha. Math. Ser., 3(LXI):1 (2012), 67–78 | MR | Zbl
[26] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1. Math., 448 (1969), 1–40 | MR
[27] Hesse J., “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13 (1975), 131–144 | DOI | MR | Zbl
[28] Shlyk V. A., “O ravenstve $p$-emkosti i $p$-modulya”, Sib. mat. zh., 34:6 (1993), 216–221 | MR | Zbl
[29] Gehring F. W., “Quasiconformal mappings”, Complex Analysis and its Applications, v. II, Internat. Atomic Energy Agency, Vienna, 1976, 213–268 | MR | Zbl
[30] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR
[31] Mazya V. G., “Klassy oblastei, mer i emkostei v teorii prostranstv differentsiruemykh funktsii”, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravleniya, 26, VINITI, M., 1988, 159–228 | MR | Zbl
[32] Saks S., Teoriya integrala, IL, M., 1949
[33] Kovtonyuk D. A., Ryazanov V. I., “K teorii nizhnikh $Q$-gomeomorfizmov”, Ukr. mat. visn., 5:2 (2008), 157–181 | MR
[34] Ziemer W. P., “Extremal length and $p$-capacity”, Michigan Math. J., 16 (1969), 43–51 | DOI | MR | Zbl
[35] Ransford T., Potential theory in the complex plane, London Math. Soc. Student Text, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[36] Rado T., Reichelderfer P. V., Continuous transformations in analysis, Grundlehren. Math. Wiss., 75, Springer-Verlag, Berlin, 1955 | MR
[37] Federer H., Geometric measure theory, Grundlehren. Math. Wiss., 153, Springer, Berlin etc., 1969 | MR | Zbl
[38] Gehring F. W., Lehto O., “On the total differentiability of functions of a complex variable”, Ann. Acad. Sci. Fenn. Ser. A1, 272 (1959), 3–8 | MR
[39] Gehring F. W., “Lipschitz mappings and the $p$-capacity of ring in $n$-space”, Advances Theory Riemann Surfaces, Proc. Conf. (Stonybrook, N.Y., 1969), Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, N.J., 1971, 175–193 | MR
[40] Iwaniec T., Martin G., Geometric function theory and non-linear analysis, Oxford Math. Monogr., Clarendon Press, Oxford, 2001 | MR
[41] Iwaniec T., Sverák V., “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118:1 (1993), 181–188 | DOI | MR | Zbl
[42] Kovtonyuk D. A., Ryazanov V. I., “On the theory of mappings with finite area distortion”, J. Anal. Math., 104 (2008), 291–306 | DOI | MR
[43] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl
[44] Menchoff D., “Sur les differencelles totales des fonctions univalentes”, Math. Ann., 105:1 (1931), 75–85 | DOI | MR | Zbl