Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_5_a2, author = {H. Woracek}, title = {Entries of indefinite {Nevanlinna} matrices}, journal = {Algebra i analiz}, pages = {88--124}, publisher = {mathdoc}, volume = {26}, number = {5}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_5_a2/} }
H. Woracek. Entries of indefinite Nevanlinna matrices. Algebra i analiz, Tome 26 (2014) no. 5, pp. 88-124. http://geodesic.mathdoc.fr/item/AA_2014_26_5_a2/
[1] Arov D. Z., Dym H., “On three Krein extension problems and some generalizations”, Integral Equations Operator Theory, 31:1 (1998), 1–91 | DOI | MR | Zbl
[2] Arov D. Z., Dym H., $J$-contractive matrix valued functions and related topics, Encyclopedia Math. Appl., 116, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl
[3] Alpay D., Dijksma A., Langer H., “Factorization of $J$-unitary matrix polynomials on the line and a Schur algorithm for generalized Nevanlinna functions”, Linear Algebra Appl., 387 (2004), 313–342 | DOI | MR | Zbl
[4] Alpay D., Dijksma A., Rovnyak J., de Snoo H., Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, Oper. Theory Adv. Appl., 96, Birkhäuser Verlag, Basel, 1997 | MR | Zbl
[5] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR
[6] Bakan A. G., Polynomial approximation in $L_p(\mathbf R d\mu)$. I, General results and representation theorem, Preprint no. 7, Nats. Akad. Nauk Ukraïn. Inst. Mat., 1998 | MR | Zbl
[7] Berg C., “Indeterminate moment problems and the theory of entire functions”, J. Comput. Appl. Math., 65:1–3, Proc. Intern. Conf. Orthogonality, Moment Problems and Continued Fractions (Delft, 1994) (1995), 27–55 | DOI | MR | Zbl
[8] Berg C., Pedersen H. L., “On the order and type of the entire functions associated with an indeterminate Hamburger moment problem”, Ark. Mat., 32:1 (1994), 1–11 | DOI | MR | Zbl
[9] Berg C., Pedersen H. L., “Nevanlinna matrices of entire functions”, Math. Nachr., 171 (1995), 29–52 | DOI | MR | Zbl
[10] de Branges L., “The Bernstein problem”, Proc. Amer. Math. Soc., 10 (1959), 825–832 | DOI | MR | Zbl
[11] de Branges L., Hilbert spaces of entire functions, Prentice-Hall Inc., Englewood Cliffs, N.J., 1968 | MR | Zbl
[12] Derkach V., Hassi S., de Snoo H., “Operator models associated with Kac subclasses of generalized Nevanlinna functions”, Methods Funct. Anal. Topology, 5:1 (1999), 65–87 | MR | Zbl
[13] Dijksma A., Langer H., Luger A., Shondin Yu., “A factorization result for generalized Nevanlinna functions of the class $\mathcal N_\kappa$”, Integral Equations Operator Theory, 36:1 (2000), 121–125 | DOI | MR | Zbl
[14] Gorbachuk M. L., Gorbachuk V. I., M. G. Krein's lectures on entire operators, Oper. Theory Adv. Appl., 97, Birkhäuser Verlag, Basel, 1997 | MR | Zbl
[15] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR
[16] Großmann M., Langer H., “Über indexerhaltende Erweiterungen eines hermiteschen Operators im Pontrjaginraum”, Math. Nachr., 64 (1974), 289–317 | DOI | MR | Zbl
[17] Kaltenbäck M., “Indefinite analogues of $j_{pq}$-contractive matrix functions and linear fractional transformations”, Acta Sci. Math. (Szeged), 68:1–2 (2002), 349–371 | MR | Zbl
[18] Kats I. S., Krein M. G., “O spektralnykh funktsiyakh struny”: F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR
[19] Krein M. G., “K teorii tselykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. mat., 11:4 (1947), 309–326 | MR | Zbl
[20] Krein M. G., “O neopredelennom sluchae kraevoi zadachi Shturma–Liuvillya v intervale”, Izv. AN SSSR. Ser. mat., 16:4 (1952), 293–324 | MR | Zbl
[21] Krein M. G., Langer H., “Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $\Pi_\kappa$ zusammenhängen. I, Einige Funktionenklassen und ihre Darstellungen”, Math. Nachr., 77 (1977), 187–236 | DOI | MR | Zbl
[22] Krein M. G., Langer H., “Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $\Pi_\kappa$ zusammenhängen. II, Verallgemeinerte Resolventen, $u$-Resolventen und ganze Operatoren”, J. Funct. Anal., 30:3 (1978), 390–447 | DOI | MR | Zbl
[23] Krein M. G., Langer H., “On some extension problems which are closely connected with the theory of Hermitian operators in a space $\Pi_\kappa$. III, Indefinite analogues of the Hamburger and Stieltjes moment problems. Pt. I”, Beiträge Anal., 14 (1979), 25–40, (loose errata) | MR
[24] Krein M. G., Langer H., “On some extension problems which are closely connected with the theory of Hermitian operators in a space $\Pi_\kappa$. III, Indefinite analogues of the Hamburger and Stieltjes moment problems. Pt. II”, Beiträge Anal., 15 (1981), 27–45 | MR
[25] Krein M. G., Langer H., “Some propositions on analytic matrix functions related to the theory of operators in the space $\Pi_\kappa$”, Acta Sci. Math. (Szeged), 43:1–2 (1981), 181–205 | MR | Zbl
[26] Krein M. G., Langer H., “On some continuation problems which are closely related to the theory of operators in spaces $\Pi_\kappa$. IV, Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions”, J. Operator Theory, 13:2 (1985), 299–417 | MR | Zbl
[27] Krein M. G., Langer H., “Continuation of Hermitian Positive Definite Functions and Related Questions”, Integral Equations Operator Theory, 78:1 (2014), 1–69 | DOI | MR | Zbl
[28] Kaltenbäck M., Woracek H., “Generalized resolvent matrices and spaces of analytic functions”, Integral Equations Operator Theory, 32:3 (1998), 282–318 | DOI | MR | Zbl
[29] Kaltenbäck M., Woracek H., “On extensions of Hermitian functions with a finite number of negative squares”, J. Operator Theory, 40:1 (1998), 147–183 | MR | Zbl
[30] Kaltenbäck M., Woracek H., “Pontryagin spaces of entire functions. I, Integral”, Equations Operator Theory, 33:1 (1999), 34–97 | DOI | MR | Zbl
[31] Kaltenbäck M., Woracek H., “Pontryagin spaces of entire functions. II”, Integral Equations Operator Theory, 33:3 (1999), 305–380 | DOI | MR | Zbl
[32] Kaltenbäck M., Woracek H., “Pontryagin spaces of entire functions. III”, Acta Sci. Math. (Szeged), 69:1–2 (2003), 241–310 | MR | Zbl
[33] Kaltenbäck M., Woracek H., “Unique prime factorization in a partial semigroup of matrix-polynomials”, Discuss. Math. Gen. Algebra Appl., 26:1 (2006), 21–43 | DOI | MR | Zbl
[34] Kaltenbäck M., Woracek H., “Pontryagin spaces of entire functions. VI”, Acta Sci. Math. (Szeged), 76:3–4 (2010), 511–560 | MR | Zbl
[35] Kaltenbäck M., Woracek H., “Pontryagin spaces of entire functions. V”, Acta Sci. Math. (Szeged), 77:1–2 (2011), 223–336 | MR | Zbl
[36] Kaltenbäck M., Winkler H., Woracek H., “Singularities of generalized strings”, Oper. Theory Adv. Appl., 163, Birkhäuser, Basel, 2006, 191–248 | DOI | MR | Zbl
[37] Langer H., “A characterization of generalized zeros of negative type of functions of the class $N_\kappa$”, Advances in Invariant Subspaces and other Results of Operator Theory (Timişoara and Herculane, 1984), Oper. Theory Adv. Appl., 17, Birkhäuser, Basel, 1986, 201–212 | MR
[38] Levin B. Ja., Distribution of zeros of entire functions, Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, R.I., 1980 | MR
[39] Langer M., Woracek H., Direct and inverse spectral theorems for a class of canonical systems with two singular endpoints, Manuscript in preparation
[40] Langer M., Woracek H., “A characterization of intermediate Weyl coefficients”, Monatsh. Math., 135:2 (2002), 137–155 | DOI | MR | Zbl
[41] Langer M., Woracek H., “The exponential type of the fundamental solution of an indefinite Hamiltonian system”, Complex Anal. Oper. Theory, 7:1 (2013), 285–312 | DOI | MR | Zbl
[42] Langer M., Woracek H., “Indefinite Hamiltonian systems whose Titchmarsh–Weyl coefficients have no finite generalized poles of non-positive type”, Oper. Matrices, 7:3 (2013), 477–555 | DOI | MR | Zbl
[43] Pedersen H. L., “Logarithmic order and type of indeterminate moment problems. II”, J. Comput. Appl. Math., 233:3 (2009), 808–814 | DOI | MR | Zbl
[44] Remmert R., Classical topics in complex function theory, Grad. Texts in Math., 172, Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[45] Rosenblum M., Rovnyak J., Topics in Hardy classes and univalent functions, Birkhäuser Adv. Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994 | MR | Zbl | Zbl
[46] Woracek H., “Nevanlinna–Pick interpolation: the degenerated case”, Linear Algebra Appl., 252 (1997), 141–158 | DOI | MR | Zbl
[47] Woracek H., “Existence of zerofree functions $N$-associated to a de Branges Pontryagin space”, Monatsh. Math., 162:4 (2011), 453–506 | DOI | MR | Zbl
[48] Woracek H., “An inverse spectral theorem for Kreĭn strings with a negative eigenvalue”, Monatsh. Math., 167:1 (2012), 105–149 | DOI | MR | Zbl