Entries of indefinite Nevanlinna matrices
Algebra i analiz, Tome 26 (2014) no. 5, pp. 88-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the early 1950's, M. G. Krein characterized the entire functions that are an entry of some Nevanlinna matrix, and the pairs of entire functions that are a row of some Nevanlinna matrix. In connection with Pontryagin space versions of Krein's theory of entire operators and de Branges' theory of Hilbert spaces of entire functions, an indefinite analog of the Nevanlinna matrices plays a role. In the paper, the above-mentioned characterizations are extended to the indefinite situation and the geometry of the associated reproducing kernel Pontryagin spaces is investigated.
Keywords: Nevanlinna matrix, Pontryagin space, entire function, Krein class.
@article{AA_2014_26_5_a2,
     author = {H. Woracek},
     title = {Entries of indefinite {Nevanlinna} matrices},
     journal = {Algebra i analiz},
     pages = {88--124},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_5_a2/}
}
TY  - JOUR
AU  - H. Woracek
TI  - Entries of indefinite Nevanlinna matrices
JO  - Algebra i analiz
PY  - 2014
SP  - 88
EP  - 124
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_5_a2/
LA  - en
ID  - AA_2014_26_5_a2
ER  - 
%0 Journal Article
%A H. Woracek
%T Entries of indefinite Nevanlinna matrices
%J Algebra i analiz
%D 2014
%P 88-124
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_5_a2/
%G en
%F AA_2014_26_5_a2
H. Woracek. Entries of indefinite Nevanlinna matrices. Algebra i analiz, Tome 26 (2014) no. 5, pp. 88-124. http://geodesic.mathdoc.fr/item/AA_2014_26_5_a2/

[1] Arov D. Z., Dym H., “On three Krein extension problems and some generalizations”, Integral Equations Operator Theory, 31:1 (1998), 1–91 | DOI | MR | Zbl

[2] Arov D. Z., Dym H., $J$-contractive matrix valued functions and related topics, Encyclopedia Math. Appl., 116, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl

[3] Alpay D., Dijksma A., Langer H., “Factorization of $J$-unitary matrix polynomials on the line and a Schur algorithm for generalized Nevanlinna functions”, Linear Algebra Appl., 387 (2004), 313–342 | DOI | MR | Zbl

[4] Alpay D., Dijksma A., Rovnyak J., de Snoo H., Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, Oper. Theory Adv. Appl., 96, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[5] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR

[6] Bakan A. G., Polynomial approximation in $L_p(\mathbf R d\mu)$. I, General results and representation theorem, Preprint no. 7, Nats. Akad. Nauk Ukraïn. Inst. Mat., 1998 | MR | Zbl

[7] Berg C., “Indeterminate moment problems and the theory of entire functions”, J. Comput. Appl. Math., 65:1–3, Proc. Intern. Conf. Orthogonality, Moment Problems and Continued Fractions (Delft, 1994) (1995), 27–55 | DOI | MR | Zbl

[8] Berg C., Pedersen H. L., “On the order and type of the entire functions associated with an indeterminate Hamburger moment problem”, Ark. Mat., 32:1 (1994), 1–11 | DOI | MR | Zbl

[9] Berg C., Pedersen H. L., “Nevanlinna matrices of entire functions”, Math. Nachr., 171 (1995), 29–52 | DOI | MR | Zbl

[10] de Branges L., “The Bernstein problem”, Proc. Amer. Math. Soc., 10 (1959), 825–832 | DOI | MR | Zbl

[11] de Branges L., Hilbert spaces of entire functions, Prentice-Hall Inc., Englewood Cliffs, N.J., 1968 | MR | Zbl

[12] Derkach V., Hassi S., de Snoo H., “Operator models associated with Kac subclasses of generalized Nevanlinna functions”, Methods Funct. Anal. Topology, 5:1 (1999), 65–87 | MR | Zbl

[13] Dijksma A., Langer H., Luger A., Shondin Yu., “A factorization result for generalized Nevanlinna functions of the class $\mathcal N_\kappa$”, Integral Equations Operator Theory, 36:1 (2000), 121–125 | DOI | MR | Zbl

[14] Gorbachuk M. L., Gorbachuk V. I., M. G. Krein's lectures on entire operators, Oper. Theory Adv. Appl., 97, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[15] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR

[16] Großmann M., Langer H., “Über indexerhaltende Erweiterungen eines hermiteschen Operators im Pontrjaginraum”, Math. Nachr., 64 (1974), 289–317 | DOI | MR | Zbl

[17] Kaltenbäck M., “Indefinite analogues of $j_{pq}$-contractive matrix functions and linear fractional transformations”, Acta Sci. Math. (Szeged), 68:1–2 (2002), 349–371 | MR | Zbl

[18] Kats I. S., Krein M. G., “O spektralnykh funktsiyakh struny”: F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR

[19] Krein M. G., “K teorii tselykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. mat., 11:4 (1947), 309–326 | MR | Zbl

[20] Krein M. G., “O neopredelennom sluchae kraevoi zadachi Shturma–Liuvillya v intervale”, Izv. AN SSSR. Ser. mat., 16:4 (1952), 293–324 | MR | Zbl

[21] Krein M. G., Langer H., “Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $\Pi_\kappa$ zusammenhängen. I, Einige Funktionenklassen und ihre Darstellungen”, Math. Nachr., 77 (1977), 187–236 | DOI | MR | Zbl

[22] Krein M. G., Langer H., “Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $\Pi_\kappa$ zusammenhängen. II, Verallgemeinerte Resolventen, $u$-Resolventen und ganze Operatoren”, J. Funct. Anal., 30:3 (1978), 390–447 | DOI | MR | Zbl

[23] Krein M. G., Langer H., “On some extension problems which are closely connected with the theory of Hermitian operators in a space $\Pi_\kappa$. III, Indefinite analogues of the Hamburger and Stieltjes moment problems. Pt. I”, Beiträge Anal., 14 (1979), 25–40, (loose errata) | MR

[24] Krein M. G., Langer H., “On some extension problems which are closely connected with the theory of Hermitian operators in a space $\Pi_\kappa$. III, Indefinite analogues of the Hamburger and Stieltjes moment problems. Pt. II”, Beiträge Anal., 15 (1981), 27–45 | MR

[25] Krein M. G., Langer H., “Some propositions on analytic matrix functions related to the theory of operators in the space $\Pi_\kappa$”, Acta Sci. Math. (Szeged), 43:1–2 (1981), 181–205 | MR | Zbl

[26] Krein M. G., Langer H., “On some continuation problems which are closely related to the theory of operators in spaces $\Pi_\kappa$. IV, Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions”, J. Operator Theory, 13:2 (1985), 299–417 | MR | Zbl

[27] Krein M. G., Langer H., “Continuation of Hermitian Positive Definite Functions and Related Questions”, Integral Equations Operator Theory, 78:1 (2014), 1–69 | DOI | MR | Zbl

[28] Kaltenbäck M., Woracek H., “Generalized resolvent matrices and spaces of analytic functions”, Integral Equations Operator Theory, 32:3 (1998), 282–318 | DOI | MR | Zbl

[29] Kaltenbäck M., Woracek H., “On extensions of Hermitian functions with a finite number of negative squares”, J. Operator Theory, 40:1 (1998), 147–183 | MR | Zbl

[30] Kaltenbäck M., Woracek H., “Pontryagin spaces of entire functions. I, Integral”, Equations Operator Theory, 33:1 (1999), 34–97 | DOI | MR | Zbl

[31] Kaltenbäck M., Woracek H., “Pontryagin spaces of entire functions. II”, Integral Equations Operator Theory, 33:3 (1999), 305–380 | DOI | MR | Zbl

[32] Kaltenbäck M., Woracek H., “Pontryagin spaces of entire functions. III”, Acta Sci. Math. (Szeged), 69:1–2 (2003), 241–310 | MR | Zbl

[33] Kaltenbäck M., Woracek H., “Unique prime factorization in a partial semigroup of matrix-polynomials”, Discuss. Math. Gen. Algebra Appl., 26:1 (2006), 21–43 | DOI | MR | Zbl

[34] Kaltenbäck M., Woracek H., “Pontryagin spaces of entire functions. VI”, Acta Sci. Math. (Szeged), 76:3–4 (2010), 511–560 | MR | Zbl

[35] Kaltenbäck M., Woracek H., “Pontryagin spaces of entire functions. V”, Acta Sci. Math. (Szeged), 77:1–2 (2011), 223–336 | MR | Zbl

[36] Kaltenbäck M., Winkler H., Woracek H., “Singularities of generalized strings”, Oper. Theory Adv. Appl., 163, Birkhäuser, Basel, 2006, 191–248 | DOI | MR | Zbl

[37] Langer H., “A characterization of generalized zeros of negative type of functions of the class $N_\kappa$”, Advances in Invariant Subspaces and other Results of Operator Theory (Timişoara and Herculane, 1984), Oper. Theory Adv. Appl., 17, Birkhäuser, Basel, 1986, 201–212 | MR

[38] Levin B. Ja., Distribution of zeros of entire functions, Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, R.I., 1980 | MR

[39] Langer M., Woracek H., Direct and inverse spectral theorems for a class of canonical systems with two singular endpoints, Manuscript in preparation

[40] Langer M., Woracek H., “A characterization of intermediate Weyl coefficients”, Monatsh. Math., 135:2 (2002), 137–155 | DOI | MR | Zbl

[41] Langer M., Woracek H., “The exponential type of the fundamental solution of an indefinite Hamiltonian system”, Complex Anal. Oper. Theory, 7:1 (2013), 285–312 | DOI | MR | Zbl

[42] Langer M., Woracek H., “Indefinite Hamiltonian systems whose Titchmarsh–Weyl coefficients have no finite generalized poles of non-positive type”, Oper. Matrices, 7:3 (2013), 477–555 | DOI | MR | Zbl

[43] Pedersen H. L., “Logarithmic order and type of indeterminate moment problems. II”, J. Comput. Appl. Math., 233:3 (2009), 808–814 | DOI | MR | Zbl

[44] Remmert R., Classical topics in complex function theory, Grad. Texts in Math., 172, Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[45] Rosenblum M., Rovnyak J., Topics in Hardy classes and univalent functions, Birkhäuser Adv. Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994 | MR | Zbl | Zbl

[46] Woracek H., “Nevanlinna–Pick interpolation: the degenerated case”, Linear Algebra Appl., 252 (1997), 141–158 | DOI | MR | Zbl

[47] Woracek H., “Existence of zerofree functions $N$-associated to a de Branges Pontryagin space”, Monatsh. Math., 162:4 (2011), 453–506 | DOI | MR | Zbl

[48] Woracek H., “An inverse spectral theorem for Kreĭn strings with a negative eigenvalue”, Monatsh. Math., 167:1 (2012), 105–149 | DOI | MR | Zbl