Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_4_a3, author = {D. Mayer and A. Momeni and A. Venkov}, title = {Congruence properties of induced representations and their applications}, journal = {Algebra i analiz}, pages = {129--147}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_4_a3/} }
D. Mayer; A. Momeni; A. Venkov. Congruence properties of induced representations and their applications. Algebra i analiz, Tome 26 (2014) no. 4, pp. 129-147. http://geodesic.mathdoc.fr/item/AA_2014_26_4_a3/
[1] Alperin J. L., Bell Rowen B., Groups and representations, Grad. Texts in Math., 162, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[2] Atkin A. O. L., Li Wen-Ching Winnie, Long Ling, “On Atkin and Swinnerton-Dyer congruence relations. II”, Math. Ann., 340:2 (2008), 335–358 | DOI | MR | Zbl
[3] Balslev E., Venkov A., “The Weyl law for subgroups of the modular group”, Geom. Funct. Anal., 8:3 (1998), 437–465 | DOI | MR | Zbl
[4] Balslev E., Venkov A., Stability of character resonances, Tech. report, Centre Math. Phys. and Stochastics, Univ. Aarhus, 1999
[5] Bruggeman E., Fraczek M., Mayer D., “Perturbation of zeros of the Selberg zeta function for $\Gamma_0(4)$”, Exp. Math., 22:3 (2013), 217–242 | DOI | MR | Zbl
[6] Fraczek M., Character deformation of the Selberg zeta function for congruence subgroups via the transfer operator, PhD thesis, Clausthal Univ., 2012
[7] Fraczek M., Mayer D., “Symmetries of transfer operator for $\Gamma_0(n)$ and a character deformation of the Selberg zeta function for $\Gamma_0(4)$”, Algebra Number Theory, 6:3 (2012), 587–610 | DOI | MR | Zbl
[8] Fricke F., “Ueber die Substitutionsgruppen, welche zu den zu dem legendre'schen Integralmodul $k^2(\omega)$ gezogenen wurzeln gehören (Mit einer Figurentafel)”, Math. Ann., 28 (1886), 99–118 | DOI | Zbl
[9] Hersch J., “Quatre propriétés isopérimétriques de membranes sphériques homogènes”, C. R. Acad. Sci. Paris Sér. A–B, 270 (1970), A1645–A1648 | MR
[10] Jones Gareth A., “Triangular maps and noncongruence subgroups of the modular group”, Bull. London Math. Soc., 11:2 (1979), 117–123 | DOI | MR | Zbl
[11] Kiming I., Schütt M., Verrill H. A., “Lifts of projective congruence groups”, J. Lond. Math. Soc. (2), 83 (2011), 96–120 | DOI | MR | Zbl
[12] Kurth Ch. A., Long Ling, “On modular forms for some noncongruence subgroups of $\mathrm{SL}_2(\mathbb Z)$”, J. Number Theory, 128:7 (2008), 1989–2009 | DOI | MR | Zbl
[13] Li Wen-Ching Winnie, Long Ling, Yang Zifeng, “On Atkin–Swinnerton-Dyer congruence relations”, J. Number Theory, 113:1 (2005), 117–148 | DOI | MR | Zbl
[14] Long Ling, “On Atkin and Swinnerton-Dyer congruence relations. III”, J. Number Theory, 128:8 (2008), 2413–2429 | DOI | MR | Zbl
[15] McQuillan D. L., “Classification of normal congruence subgroups of the modular group”, Amer. J. Math., 87 (1965), 285–296 | DOI | MR | Zbl
[16] Millington M. H., “Subgroups of the classical modular group”, J. Lond. Math. Soc. (2), 1 (1969), 351–357 | DOI | MR | Zbl
[17] Newman M., “On a problem of G. Sansone”, Ann. Mat. Pura Appl. (4), 65 (1964), 27–33 | DOI | MR | Zbl
[18] Newman M., “Classification of normal subgroups of the modular group”, Trans. Amer. Math. Soc., 126 (1967), 267–277 | DOI | MR | Zbl
[19] Phillips R., Sarnak P., “The spectrum of Fermat curves”, Geom. Funct. Anal., 1:1 (1991), 80–146 | DOI | MR | Zbl
[20] Rankin R. A., “Lattice subgroups of free congruence groups”, Invent. Math., 2 (1967), 215–221 | DOI | MR | Zbl
[21] Rankin R. A., Modular forms and functions, Cambridge Univ. Press, Cambridge, 1977 | MR | Zbl
[22] Sansone G., “Problemi insoluti nella teoria delle sostituzioni lineari”, Conv. Internaz. di Teoria dei Gruppi Finiti (Firenze, 1960), Edizioni Cremonese, Rome, 1960, 5–19 | MR
[23] Sarnak P., “Selberg's eigenvalue conjecture”, Notices Amer. Math. Soc., 42:11 (1995), 1272–1277 | MR | Zbl
[24] Selberg A., “On the estimation of Fourier coefficients of modular forms”, Proc. Sympos. Pure Math., 8, Amer. Math. Soc., Providence, RI, 1965, 1–15 | DOI | MR
[25] Selberg A., “Remarks on the distribution of poles of Eisenstein series”, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Pt. II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem, 1990, 251–278 | MR
[26] Venkov A. B., Spectral theory of automorphic functions and its applications, Math. Appl. (Soviet Ser.), 51, Kluwer Acad. Publ. Group, Dordrecht, 1990 | MR
[27] Wohlfahrt K., “An extension of F. Klein's level concept”, Illinois J. Math., 8 (1964), 529–535 | MR | Zbl
[28] Yang Paul C., Yau Shing Tung, “Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7:1 (1980), 55–63 | MR
[29] Zograf P., “A spectral proof of Rademacher's conjecture for congruence subgroups of the modular group”, J. Reine Angew. Math., 414 (1991), 113–116 | MR | Zbl
[30] Zograf P. G., “O spektre avtomorfnykh laplasianov v prostranstvakh parabolicheskikh funktsii”, Dokl. AN SSSR, 269:4 (1983), 802–805 | MR | Zbl
[31] Zograf P. G., “Malye sobstvennye znacheniya avtomorfnykh laplasianov v prostranstvakh parabolicheskikh form”, Zap. nauch. semin. LOMI, 134, 1984, 157–168 | MR | Zbl