Congruence properties of induced representations and their applications
Algebra i analiz, Tome 26 (2014) no. 4, pp. 129-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

Congruence properties of the representations $U_\alpha:=U^{\mathrm{PSL}(2,\mathbb Z)}_{\chi_\alpha}$ are studied for the projective modular group $\mathrm{PSL}(2,\mathbb Z)$ induced by a family $\chi_\alpha$ of characters for the Hecke congruence subgroup $\Gamma_0(4)$, basically introduced by A. Selberg. The interest in the representations $U_\alpha$ stems from their presence in the transfer operator approach to Selberg's zeta function for this Fuchsian group and the character $\chi_\alpha$. Hence, the location of the nontrivial zeros of this function and therefore also the spectral properties of the corresponding automorphic Laplace–Beltrami operator $\Delta_{\Gamma,\chi_\alpha}$ are closely related to their congruence properties. Even if, as expected, these properties of the $U_\alpha$ are easily shown to be equivalent to those well-known for the characters $\chi_\alpha$, surprisingly, both the congruence and the noncongruence groups determined by their kernels are quite different: those determined by $\chi_\alpha$ are character groups of type I of the group $\Gamma_0(4)$, whereas those determined by $U_\alpha$ are character groups of the same kind for $\Gamma(4)$. Furthermore, unlike infinitely many of the groups $\ker\chi_\alpha$, whose noncongruence properties follow simply from Zograf's geometric method together with Selberg's lower bound for the lowest nonvanishing eigenvalue of the automorphic Laplacian, such arguments do not apply to the groups $\ker U_\alpha$, for the reason that they can have arbitrary genus $g\geq0$, unlike the groups $\ker\chi_\alpha$, which all have genus $g=0$.
Keywords: Selberg's character, induced representation, congruence character, congruence representation.
@article{AA_2014_26_4_a3,
     author = {D. Mayer and A. Momeni and A. Venkov},
     title = {Congruence properties of induced representations and their applications},
     journal = {Algebra i analiz},
     pages = {129--147},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_4_a3/}
}
TY  - JOUR
AU  - D. Mayer
AU  - A. Momeni
AU  - A. Venkov
TI  - Congruence properties of induced representations and their applications
JO  - Algebra i analiz
PY  - 2014
SP  - 129
EP  - 147
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_4_a3/
LA  - en
ID  - AA_2014_26_4_a3
ER  - 
%0 Journal Article
%A D. Mayer
%A A. Momeni
%A A. Venkov
%T Congruence properties of induced representations and their applications
%J Algebra i analiz
%D 2014
%P 129-147
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_4_a3/
%G en
%F AA_2014_26_4_a3
D. Mayer; A. Momeni; A. Venkov. Congruence properties of induced representations and their applications. Algebra i analiz, Tome 26 (2014) no. 4, pp. 129-147. http://geodesic.mathdoc.fr/item/AA_2014_26_4_a3/

[1] Alperin J. L., Bell Rowen B., Groups and representations, Grad. Texts in Math., 162, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[2] Atkin A. O. L., Li Wen-Ching Winnie, Long Ling, “On Atkin and Swinnerton-Dyer congruence relations. II”, Math. Ann., 340:2 (2008), 335–358 | DOI | MR | Zbl

[3] Balslev E., Venkov A., “The Weyl law for subgroups of the modular group”, Geom. Funct. Anal., 8:3 (1998), 437–465 | DOI | MR | Zbl

[4] Balslev E., Venkov A., Stability of character resonances, Tech. report, Centre Math. Phys. and Stochastics, Univ. Aarhus, 1999

[5] Bruggeman E., Fraczek M., Mayer D., “Perturbation of zeros of the Selberg zeta function for $\Gamma_0(4)$”, Exp. Math., 22:3 (2013), 217–242 | DOI | MR | Zbl

[6] Fraczek M., Character deformation of the Selberg zeta function for congruence subgroups via the transfer operator, PhD thesis, Clausthal Univ., 2012

[7] Fraczek M., Mayer D., “Symmetries of transfer operator for $\Gamma_0(n)$ and a character deformation of the Selberg zeta function for $\Gamma_0(4)$”, Algebra Number Theory, 6:3 (2012), 587–610 | DOI | MR | Zbl

[8] Fricke F., “Ueber die Substitutionsgruppen, welche zu den zu dem legendre'schen Integralmodul $k^2(\omega)$ gezogenen wurzeln gehören (Mit einer Figurentafel)”, Math. Ann., 28 (1886), 99–118 | DOI | Zbl

[9] Hersch J., “Quatre propriétés isopérimétriques de membranes sphériques homogènes”, C. R. Acad. Sci. Paris Sér. A–B, 270 (1970), A1645–A1648 | MR

[10] Jones Gareth A., “Triangular maps and noncongruence subgroups of the modular group”, Bull. London Math. Soc., 11:2 (1979), 117–123 | DOI | MR | Zbl

[11] Kiming I., Schütt M., Verrill H. A., “Lifts of projective congruence groups”, J. Lond. Math. Soc. (2), 83 (2011), 96–120 | DOI | MR | Zbl

[12] Kurth Ch. A., Long Ling, “On modular forms for some noncongruence subgroups of $\mathrm{SL}_2(\mathbb Z)$”, J. Number Theory, 128:7 (2008), 1989–2009 | DOI | MR | Zbl

[13] Li Wen-Ching Winnie, Long Ling, Yang Zifeng, “On Atkin–Swinnerton-Dyer congruence relations”, J. Number Theory, 113:1 (2005), 117–148 | DOI | MR | Zbl

[14] Long Ling, “On Atkin and Swinnerton-Dyer congruence relations. III”, J. Number Theory, 128:8 (2008), 2413–2429 | DOI | MR | Zbl

[15] McQuillan D. L., “Classification of normal congruence subgroups of the modular group”, Amer. J. Math., 87 (1965), 285–296 | DOI | MR | Zbl

[16] Millington M. H., “Subgroups of the classical modular group”, J. Lond. Math. Soc. (2), 1 (1969), 351–357 | DOI | MR | Zbl

[17] Newman M., “On a problem of G. Sansone”, Ann. Mat. Pura Appl. (4), 65 (1964), 27–33 | DOI | MR | Zbl

[18] Newman M., “Classification of normal subgroups of the modular group”, Trans. Amer. Math. Soc., 126 (1967), 267–277 | DOI | MR | Zbl

[19] Phillips R., Sarnak P., “The spectrum of Fermat curves”, Geom. Funct. Anal., 1:1 (1991), 80–146 | DOI | MR | Zbl

[20] Rankin R. A., “Lattice subgroups of free congruence groups”, Invent. Math., 2 (1967), 215–221 | DOI | MR | Zbl

[21] Rankin R. A., Modular forms and functions, Cambridge Univ. Press, Cambridge, 1977 | MR | Zbl

[22] Sansone G., “Problemi insoluti nella teoria delle sostituzioni lineari”, Conv. Internaz. di Teoria dei Gruppi Finiti (Firenze, 1960), Edizioni Cremonese, Rome, 1960, 5–19 | MR

[23] Sarnak P., “Selberg's eigenvalue conjecture”, Notices Amer. Math. Soc., 42:11 (1995), 1272–1277 | MR | Zbl

[24] Selberg A., “On the estimation of Fourier coefficients of modular forms”, Proc. Sympos. Pure Math., 8, Amer. Math. Soc., Providence, RI, 1965, 1–15 | DOI | MR

[25] Selberg A., “Remarks on the distribution of poles of Eisenstein series”, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Pt. II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem, 1990, 251–278 | MR

[26] Venkov A. B., Spectral theory of automorphic functions and its applications, Math. Appl. (Soviet Ser.), 51, Kluwer Acad. Publ. Group, Dordrecht, 1990 | MR

[27] Wohlfahrt K., “An extension of F. Klein's level concept”, Illinois J. Math., 8 (1964), 529–535 | MR | Zbl

[28] Yang Paul C., Yau Shing Tung, “Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7:1 (1980), 55–63 | MR

[29] Zograf P., “A spectral proof of Rademacher's conjecture for congruence subgroups of the modular group”, J. Reine Angew. Math., 414 (1991), 113–116 | MR | Zbl

[30] Zograf P. G., “O spektre avtomorfnykh laplasianov v prostranstvakh parabolicheskikh funktsii”, Dokl. AN SSSR, 269:4 (1983), 802–805 | MR | Zbl

[31] Zograf P. G., “Malye sobstvennye znacheniya avtomorfnykh laplasianov v prostranstvakh parabolicheskikh form”, Zap. nauch. semin. LOMI, 134, 1984, 157–168 | MR | Zbl