Asymptotics of a~cubic sine kernel determinant
Algebra i analiz, Tome 26 (2014) no. 4, pp. 22-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-parameter family of Fredholm determinants $\operatorname{det}(I-\gamma K_\mathrm{csin})$, $\gamma\in\mathbb R$, is studied for an integrable Fredholm operator $K_\mathrm{csin}$ that acts on the interval $(-s,s)$ and whose kernel is a cubic generalization of the sine kernel that appears in random matrix theory. This Fredholm determinant arises in the description of the Fermi distribution of semiclassical nonequilibrium Fermi states in condensed matter physics as well as in the random matrix theory. By using the Riemann–Hilbert method, the large $s$ asymptotics of $\operatorname{det}(I-\gamma K_\mathrm{csin})$ is calculated for all values of the real parameter $\gamma$.
Keywords: Fredholm determinant, integrable Fredholm operator, Riemann–Hilbert method, Fermi distribution.
@article{AA_2014_26_4_a1,
     author = {T. Bothner and A. Its},
     title = {Asymptotics of a~cubic sine kernel determinant},
     journal = {Algebra i analiz},
     pages = {22--91},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_4_a1/}
}
TY  - JOUR
AU  - T. Bothner
AU  - A. Its
TI  - Asymptotics of a~cubic sine kernel determinant
JO  - Algebra i analiz
PY  - 2014
SP  - 22
EP  - 91
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_4_a1/
LA  - en
ID  - AA_2014_26_4_a1
ER  - 
%0 Journal Article
%A T. Bothner
%A A. Its
%T Asymptotics of a~cubic sine kernel determinant
%J Algebra i analiz
%D 2014
%P 22-91
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_4_a1/
%G en
%F AA_2014_26_4_a1
T. Bothner; A. Its. Asymptotics of a~cubic sine kernel determinant. Algebra i analiz, Tome 26 (2014) no. 4, pp. 22-91. http://geodesic.mathdoc.fr/item/AA_2014_26_4_a1/

[1] Basor E., Tracy C., “Some problems associated with the asymptotics of $\tau$-functions”, Surikagaku, 30:3 (1992), 71–76

[2] Basor E., Widom H., “Toeplitz and Wiener–Hopf determinants with piecewise continuous symbols”, J. Funct. Anal., 50:3 (1983), 387–413 | DOI | MR | Zbl

[3] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F., Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. I, II, McGrow–Hill Book Co., New York, 1953 | Zbl

[4] Bertola M., “On the location of poles for the Ablowitz–Segur family of solutions to the second Painlevé equation”, Nonlinearity, 25:4 (2012), 1179–1185 | DOI | MR | Zbl

[5] Bettelheim B., Wiegmann P., “Universal Fermi distribution of semiclassical nonequilibrium Fermi states”, Phys. Rev. B, 84 (2011), 085102 | DOI

[6] Budylin A. M., Buslaev V. S., “Kvaziklassicheskaya asimptotika rezolventy integralnogo operatora svertki s sinus-yadrom na konechnom intervale”, Algebra i analiz, 7:6 (1995), 79–103 | MR | Zbl

[7] Bleher P., Its A., “Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model”, Ann. of Math. (2), 150:1 (1999), 185–266 | DOI | MR | Zbl

[8] Bleher P., Its A., “Double scaling limit in the random matrix model: the Riemann–Hilbert approach”, Comm. Pure Appl. Math., 56:4 (2003), 433–516 | DOI | MR | Zbl

[9] Bothner T., Its A., “Asymptotics of a Fredholm Determinant Corresponding to the First Bulk Critical Universality Class in Random Matrix Models”, Comm. Math. Phys., 328:1 (2014), 155–202 | DOI | MR | Zbl

[10] Bothner T., Its A., “The nonlinear steepest descent approach to the singular asymptotics of the second Painlevé transcendent”, Phys. D, 241:23–24 (2012), 2204–2225 | DOI | MR | Zbl

[11] Claeys T., Kuijlaars A., “Universality of the double scaling limit in random matrix models”, Comm. Pure Appl. Math., 59:11 (2006), 1573–1603 | DOI | MR | Zbl

[12] Deift P., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Math., 3, Amer. Math. Soc., Providence, RI, 1999 | MR

[13] Deift P., Its A., Krasovsky I., On asymptotics of a Toeplitz determinant with singularities, 2012, arXiv: 1206.1292

[14] Deift P., Its A., Krasovsky I., Zhou X., “The Widom–Dyson constant for the gap probability in random matrix theory”, J. Comput. Appl. Math., 202:1 (2007), 26–47 | DOI | MR | Zbl

[15] Deift P., Its A., Zhou X., “A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics”, Ann. of Math. (2), 146:1 (1997), 149–235 | DOI | MR | Zbl

[16] Deift P., Kriecherbauer T., McLaughlin K. T-R., “New results on the equilibrium measure for logarithmic potentials in the presence of an external field”, J. Approx. Theory, 95:3 (1998), 388–475 | DOI | MR | Zbl

[17] Deift P., Kriecherbauer T., McLaughlin K. T-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[18] Deift P. A., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl

[19] Dyson F., “Fredholm determinants and inverse scattering problems”, Comm. Math. Phys., 47:2 (1976), 171–183 | DOI | MR | Zbl

[20] Ehrhardt T., “Dyson's constant in the asymptotics of the Fredholm determinant of the sine kernel”, Comm. Math. Phys., 262:2 (2006), 317–341 | DOI | MR | Zbl

[21] Faddeev L. D, Takhtadzhyan L. A., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[22] Fokas A., Its A., Kapaev A., Novokshenov V., Painlevé transcendents. The Riemann–Hilbert approach, Math. Surveys and Monogr., 128, American Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl

[23] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76:1 (1980), 65–116 | DOI | MR | Zbl

[24] Its A., Izergin A., Korepin V., “Long-distance asymptotics of temperature correlators of the impenetrable Bose gas”, Comm. Math. Phys., 130:3 (1990), 471–488 | DOI | MR | Zbl

[25] Its A., Izergin A., Korepin V., Slavnov N., “Differential equations for quantum correlation functions”, Internet J. Modern. Physics B, 4:5 (1990), 1003–1037 | DOI | MR | Zbl

[26] Its A., Izergin A., Korepin V., “Large time and distance asymptotics of the temperature field correlator in the impenetrable Bose gas”, Nucl. Phys. B, 348:3 (1991), 757–765 | DOI | MR

[27] Its A., Izergin A., Korepin V., Varzugin G., “Large time and distance asymptotics of field correlation function of impenetrable bosons at finite temperature”, Physica D, 54:4 (1992), 351–395 | DOI | MR | Zbl

[28] Its A., Krasovsky I., “Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump”, Contemp. Math., 458 (2008), 215–247 | DOI | MR | Zbl

[29] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I, General theory and $\tau$-function”, Phys. D, 2:2 (1981), 306–352 | DOI | MR | Zbl

[30] Kitanine N., Kozlowski K., Maillet J., Slavnov N., Terras V., “Riemann–Hilbert approach to a generalised sine kernel and applications”, Comm. Math. Phys., 291:3 (2009), 691–761 | DOI | MR | Zbl

[31] Krasovsky I., “Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle”, Int. Math. Res. Not., 2004:25 (2004), 1249–1272 | DOI | MR | Zbl

[32] Mehta M. L., Random Matrices, 2nd ed., Acad. Press, Boston, MA, 1991 | MR | Zbl

[33] McCoy B. M., Tang Sh., “Connection formulae for Painlevé V functions”, Physica D, 19:1 (1986), 42–72 | DOI | MR | Zbl

[34] McCoy B. M., Tang Sh., “Connection formulae for Painlevé functions. II, The $\delta$-function Bose gas problem”, Physica D, 20:2–3 (1986), 187–216 | DOI | MR | Zbl

[35] Montgomery H., “The pair correlation of zeros of the zeta function”, Analytic Number Theory (St. Louis Univ., 1972), Proc. Sympos. Pure Math., 24, Amer. Math. Soc., Providence, RI, 1973, 181–193 | DOI | MR

[36] Odlyzko A., “On the distribution of spacings between zeros of the zeta function”, Math. Comp., 48:177 (1987), 273–308 | DOI | MR | Zbl

[37] Pastur L., Shcherbina M., “Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles”, J. Statist. Phys., 86:1–2 (1997), 109–147 | DOI | MR | Zbl

[38] Segur H., Ablowitz M., “Asymptotic solutions of the Korteweg de Vries equation”, Stud. Appl. Math., 57:1 (1977), 13–44 | MR | Zbl

[39] Simon B., Trace ideals and their applications, London Math. Soc. Lecture Note Ser., 35, Cambridge Univ. Press, Cambridge–New York, 1979 | MR | Zbl

[40] Suleimanov B. I., “On asymptotics of regular solutions for a special kind of Painleve V equation”, Lecture Notes in Math., 1193, Springer-Verlag, Berlin, 1986, 230–260