Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_3_a3,
author = {A. A. Soloviev},
title = {Asymptotic behavior of solutions of the {Hamer} equation},
journal = {Algebra i analiz},
pages = {159--179},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2014_26_3_a3/}
}
A. A. Soloviev. Asymptotic behavior of solutions of the Hamer equation. Algebra i analiz, Tome 26 (2014) no. 3, pp. 159-179. http://geodesic.mathdoc.fr/item/AA_2014_26_3_a3/
[1] Kawashima S., Tanaka Y., “Stability of rarefaction waves for a model system of a radiating gas”, Kyushu J. Math., 58 (2004), 211–250 | DOI | MR | Zbl | DOI | MR | Zbl
[2] Hamer K., “Nonlinear effects on the propogation of sounds waves in a radiating gas”, Quart. J. Mech. Appl. Math., 24 (1971), 155–168 | DOI | Zbl | DOI | Zbl
[3] Ito K., BV-Solution of a hyperbolic-elliptic system for a radiating gas, Preprint, Ser. #368, Hokkaido Univ., January 1997, 33 pp. | Zbl | Zbl
[4] Liu Y., Kawashima S., “Asymptotic behavior of solutions to a model system of a radiating gas”, Commun. Pure Appl. Anal., 10:1 (2011), 209–223 | DOI | MR | Zbl | DOI | MR | Zbl
[5] Lattanzio C., Marcati P., “Global well-posedness and relaxation limits of a model for radiating gas”, J. Differential Equations, 190:2 (2003), 439–465 | DOI | MR | Zbl | DOI | MR | Zbl
[6] Laurencot P., “Asymptotic self-similarity for a simplified model for radiating gases”, Asymptot. Anal., 42:3–4 (2005), 251–262 | MR | Zbl | MR | Zbl
[7] Solovev A. A., “Glavnyi chlen asimptotiki resheniya uravneniya Khamera”, Dokl. RAN, 439:6 (2011), 740–742 | MR | MR
[8] Serre D., “$L^1$-stability of constants in a model for radiating gases”, Commun. Math. Sci., 1:1 (2003), 197–205 | DOI | MR | Zbl | DOI | MR | Zbl