Morse--Novikov theory, Heegaard splittings, and closed orbits of gradient flows
Algebra i analiz, Tome 26 (2014) no. 3, pp. 131-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work of Donaldson and Mark made the structure of the Seiberg–Witten invariant of $3$-manifolds clear. It corresponds to certain torsion type invariants counting flow lines and closed orbits of a gradient flow of a circle-valued Morse map on a $3$-manifold. In the paper, these invariants are studied by using the Morse–Novikov theory and Heegaard splitting for sutured manifolds, and detailed computations are made for knot complements.
Keywords: oriented knot, sutured manifold, Morse map, Novikov complex, half-transversal gradients, Lefschetz zeta function.
@article{AA_2014_26_3_a2,
     author = {H. Goda and H. Matsuda and A. Pajitnov},
     title = {Morse--Novikov theory, {Heegaard} splittings, and closed orbits of gradient flows},
     journal = {Algebra i analiz},
     pages = {131--158},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_3_a2/}
}
TY  - JOUR
AU  - H. Goda
AU  - H. Matsuda
AU  - A. Pajitnov
TI  - Morse--Novikov theory, Heegaard splittings, and closed orbits of gradient flows
JO  - Algebra i analiz
PY  - 2014
SP  - 131
EP  - 158
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_3_a2/
LA  - en
ID  - AA_2014_26_3_a2
ER  - 
%0 Journal Article
%A H. Goda
%A H. Matsuda
%A A. Pajitnov
%T Morse--Novikov theory, Heegaard splittings, and closed orbits of gradient flows
%J Algebra i analiz
%D 2014
%P 131-158
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_3_a2/
%G en
%F AA_2014_26_3_a2
H. Goda; H. Matsuda; A. Pajitnov. Morse--Novikov theory, Heegaard splittings, and closed orbits of gradient flows. Algebra i analiz, Tome 26 (2014) no. 3, pp. 131-158. http://geodesic.mathdoc.fr/item/AA_2014_26_3_a2/

[1] Dold A., Lectures on algebraic topology, Grundlehren Math. Wiss., 200, Springer, Berlin, 1972 | MR | Zbl

[2] Donaldson S. K., “Topological field theories and formulae of Casson and Meng-Taubes”, Proc. of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 87–102 | DOI | MR | Zbl

[3] Fintushel R., Stern R., “Knots, links, and $4$-manifolds”, Invent. Math., 134:2 (1998), 363–400 | DOI | MR | Zbl

[4] Gabai D., “Foliations and the topology of $3$-manifolds”, J. Differential Geom., 18:3 (1983), 445–503 | MR | Zbl

[5] Gabai D., “Detecting fibred links in $S^3$”, Comment. Math. Helv., 61:4 (1986), 519–555 | DOI | MR | Zbl

[6] Goda H., “Heegaard splitting for sutured manifolds and Murasugi sum”, Osaka J. Math., 29:1 (1992), 21–40 | MR | Zbl

[7] Goda H., “On handle number of Seifert surfaces in $S^3$”, Osaka J. Math., 30:1 (1993), 63–80 | MR | Zbl

[8] Goda H., “Circle valued Morse theory for knots and links”, Floer Homology, Gauge Theory, and Low-dimensional Topology, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006, 71–99 | MR | Zbl

[9] Goda H., Pajitnov A., “Twisted Novikov homology and circle-valued Morse theory for knots and links”, Osaka J. Math., 42:3 (2005), 557–572 | MR | Zbl

[10] Goda H., Pajitnov A., “Dynamics of gradient flows in the half-transversal Morse theory”, Proc. Japan Acad. Ser. A Math. Sci., 85:1 (2009), 6–10 | DOI | MR | Zbl

[11] Hutchings M., Lee Y-J., “Circle-valued Morse theory, Reidemeister torsion, and Seiberg–Witten invariants of $3$-manifolds”, Topology, 38:4 (1999), 861–888 | DOI | MR | Zbl

[12] Hutchings M., Lee Y-J., “Circle-valued Morse theory and Reidemeister torsion”, Geom. Topol., 3 (1999), 369–396 | DOI | MR | Zbl

[13] Lei F., “On stability of Heegaard splittings”, Math. Proc. Cambridge Philos. Soc., 129:1 (2000), 55–57 | DOI | MR | Zbl

[14] Mark T., “Torsion, TQFT and Seiberg–Witten invariants of $3$-manifolds”, Geom. Topol., 6 (2002), 27–58 | DOI | MR | Zbl

[15] Meng G., Taubes C., “$\underline{SW}=$ Milnor torsion”, Math. Res. Lett., 3:5 (1996), 661–674 | DOI | MR | Zbl

[16] Milnor J., “Infinite cyclic coverings”, Conf. on the Topology of Manifolds (Michigan State Univ., Mich., 1967), Prindle, Weber Schmidt, Boston, Mass., 1968, 115–133 | MR

[17] Morita S., Geometry of characteristic classes, Iwanami Ser. Modern Math., Transl. Math. Monogr., 199, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[18] Novikov S. P., “Mnogoznachnye funktsii i funktsionaly. Analog teorii Morsa”, Dokl. AN SSSR, 260:1 (1981), 31–35 | MR | Zbl

[19] Pazhitnov A. V., “Prostoi gomotopicheskii tip kompleksa Novikova i $\zeta$-funktsiya Lefshetsa gradientnogo potoka”, Uspekhi mat. nauk, 54:1 (1999), 117–170 ; (9 July 1997), arXiv: dg-ga/9706014 | DOI | MR | Zbl

[20] Pajitnov A., Circle-valued Morse theory, de Gruyter Stud. Math., 32, Walter de Gruyter Co., Berlin, 2006 | DOI | MR | Zbl

[21] Pazhitnov A. V., Rudolf L., Veber K., “Chislo Morsa–Novikova dlya uzlov i zatseplenii”, Algebra i analiz, 13:3 (2001), 105–118 | MR | Zbl

[22] Scharlemann M., “Sutured manifolds and generalized Thurston norms”, J. Differential Geom., 29:3 (1989), 557–614 | MR | Zbl

[23] Scharlemann M., Thompson A., “Heegaard splittings of $(surface)\times I$ are standard”, Math. Ann., 295:3 (1993), 549–564 | DOI | MR | Zbl

[24] Turaev V., “A combinatorial formulation for the Seiberg–Witten invariants of $3$-manifolds”, Math. Res. Lett., 5:5 (1998), 583–598 | DOI | MR | Zbl