Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_3_a2, author = {H. Goda and H. Matsuda and A. Pajitnov}, title = {Morse--Novikov theory, {Heegaard} splittings, and closed orbits of gradient flows}, journal = {Algebra i analiz}, pages = {131--158}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_3_a2/} }
TY - JOUR AU - H. Goda AU - H. Matsuda AU - A. Pajitnov TI - Morse--Novikov theory, Heegaard splittings, and closed orbits of gradient flows JO - Algebra i analiz PY - 2014 SP - 131 EP - 158 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2014_26_3_a2/ LA - en ID - AA_2014_26_3_a2 ER -
H. Goda; H. Matsuda; A. Pajitnov. Morse--Novikov theory, Heegaard splittings, and closed orbits of gradient flows. Algebra i analiz, Tome 26 (2014) no. 3, pp. 131-158. http://geodesic.mathdoc.fr/item/AA_2014_26_3_a2/
[1] Dold A., Lectures on algebraic topology, Grundlehren Math. Wiss., 200, Springer, Berlin, 1972 | MR | Zbl
[2] Donaldson S. K., “Topological field theories and formulae of Casson and Meng-Taubes”, Proc. of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 87–102 | DOI | MR | Zbl
[3] Fintushel R., Stern R., “Knots, links, and $4$-manifolds”, Invent. Math., 134:2 (1998), 363–400 | DOI | MR | Zbl
[4] Gabai D., “Foliations and the topology of $3$-manifolds”, J. Differential Geom., 18:3 (1983), 445–503 | MR | Zbl
[5] Gabai D., “Detecting fibred links in $S^3$”, Comment. Math. Helv., 61:4 (1986), 519–555 | DOI | MR | Zbl
[6] Goda H., “Heegaard splitting for sutured manifolds and Murasugi sum”, Osaka J. Math., 29:1 (1992), 21–40 | MR | Zbl
[7] Goda H., “On handle number of Seifert surfaces in $S^3$”, Osaka J. Math., 30:1 (1993), 63–80 | MR | Zbl
[8] Goda H., “Circle valued Morse theory for knots and links”, Floer Homology, Gauge Theory, and Low-dimensional Topology, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006, 71–99 | MR | Zbl
[9] Goda H., Pajitnov A., “Twisted Novikov homology and circle-valued Morse theory for knots and links”, Osaka J. Math., 42:3 (2005), 557–572 | MR | Zbl
[10] Goda H., Pajitnov A., “Dynamics of gradient flows in the half-transversal Morse theory”, Proc. Japan Acad. Ser. A Math. Sci., 85:1 (2009), 6–10 | DOI | MR | Zbl
[11] Hutchings M., Lee Y-J., “Circle-valued Morse theory, Reidemeister torsion, and Seiberg–Witten invariants of $3$-manifolds”, Topology, 38:4 (1999), 861–888 | DOI | MR | Zbl
[12] Hutchings M., Lee Y-J., “Circle-valued Morse theory and Reidemeister torsion”, Geom. Topol., 3 (1999), 369–396 | DOI | MR | Zbl
[13] Lei F., “On stability of Heegaard splittings”, Math. Proc. Cambridge Philos. Soc., 129:1 (2000), 55–57 | DOI | MR | Zbl
[14] Mark T., “Torsion, TQFT and Seiberg–Witten invariants of $3$-manifolds”, Geom. Topol., 6 (2002), 27–58 | DOI | MR | Zbl
[15] Meng G., Taubes C., “$\underline{SW}=$ Milnor torsion”, Math. Res. Lett., 3:5 (1996), 661–674 | DOI | MR | Zbl
[16] Milnor J., “Infinite cyclic coverings”, Conf. on the Topology of Manifolds (Michigan State Univ., Mich., 1967), Prindle, Weber Schmidt, Boston, Mass., 1968, 115–133 | MR
[17] Morita S., Geometry of characteristic classes, Iwanami Ser. Modern Math., Transl. Math. Monogr., 199, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[18] Novikov S. P., “Mnogoznachnye funktsii i funktsionaly. Analog teorii Morsa”, Dokl. AN SSSR, 260:1 (1981), 31–35 | MR | Zbl
[19] Pazhitnov A. V., “Prostoi gomotopicheskii tip kompleksa Novikova i $\zeta$-funktsiya Lefshetsa gradientnogo potoka”, Uspekhi mat. nauk, 54:1 (1999), 117–170 ; (9 July 1997), arXiv: dg-ga/9706014 | DOI | MR | Zbl
[20] Pajitnov A., Circle-valued Morse theory, de Gruyter Stud. Math., 32, Walter de Gruyter Co., Berlin, 2006 | DOI | MR | Zbl
[21] Pazhitnov A. V., Rudolf L., Veber K., “Chislo Morsa–Novikova dlya uzlov i zatseplenii”, Algebra i analiz, 13:3 (2001), 105–118 | MR | Zbl
[22] Scharlemann M., “Sutured manifolds and generalized Thurston norms”, J. Differential Geom., 29:3 (1989), 557–614 | MR | Zbl
[23] Scharlemann M., Thompson A., “Heegaard splittings of $(surface)\times I$ are standard”, Math. Ann., 295:3 (1993), 549–564 | DOI | MR | Zbl
[24] Turaev V., “A combinatorial formulation for the Seiberg–Witten invariants of $3$-manifolds”, Math. Res. Lett., 5:5 (1998), 583–598 | DOI | MR | Zbl