Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_2_a5, author = {Ya. Shitov}, title = {Tropical semimodules of dimension two}, journal = {Algebra i analiz}, pages = {216--228}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_2_a5/} }
Ya. Shitov. Tropical semimodules of dimension two. Algebra i analiz, Tome 26 (2014) no. 2, pp. 216-228. http://geodesic.mathdoc.fr/item/AA_2014_26_2_a5/
[1] Akian M., Gaubert S., Guterman A., “Linear independence over tropical semirings and beyond”, Contemp. Math., 495, Amer. Math. Soc., Providence, RI, 2009, 1–38 | DOI | MR | Zbl
[2] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P., Synchronization and linearity. An algebra for discrete event systems, John Wiley Sons, Ltd., Chichester, 1992 | MR
[3] Barvinok A. I., “Two algorithmic results for the traveling salesman problem”, Math. Oper. Res., 21:1 (1996), 65–84 | DOI | MR | Zbl
[4] Develin M., “The moduli space of $n$ tropically collinear points in $\mathbb R^d$”, Collect. Math., 56:1 (2005), 1–19 | MR | Zbl
[5] Develin M., Sturmfels B., “Tropical convexity”, Doc. Math., 9 (2004), 1–27, (electronic) | MR | Zbl
[6] Develin M., Santos F., Sturmfels B., “On the rank of a tropical matrix”, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cambridge, 2005, 213–242 | MR | Zbl
[7] Einsiedler M., Kapranov M., Lind D., “Non-Archimedean amoebas and tropical varieties”, J. Reine Angew. Math., 601 (2006), 139–157 | MR | Zbl
[8] Ferrante J., Rackoff C., “A decision procedure for the first order theory of real addition with order”, SIAM J. Comput., 4 (1975), 69–76 | DOI | MR | Zbl
[9] Gaubert S., “Methods and applications of $(\max,+)$ linear algebra”, STACS 97 (Lübek, 1997), Lecture Notes in Comput. Sci., 1200, Springer, Berlin, 1997, 261–282 | DOI | MR
[10] Golan J. S., Semirings and their applications, Kluwer Acad. Publ., Dordrecht, 1999 | MR
[11] Litvinov G., Maslov V., “The correspondence principle for idempotent calculus and some computer applications”, Publ. Newton Inst., 11, Cambridge Univ. Press, Cambridge, 1998, 420–443 | MR
[12] Shitov Ya., “The complexity of tropical matrix factorization”, Adv. in Math., 254 (2014), 138–156 | DOI | MR | Zbl
[13] Viro O., “Dequantization of real algebraic geometry on logarithmic paper”, European Congress of Math., v. 1, Progr. Math., 201, Birkhäuser, Basel, 2001, 135–146 | MR | Zbl
[14] Wagneur E., “Moduloids and pseudomodules. 1. Dimension theory”, Discrete Math., 98:1 (1991), 57–73 | DOI | MR | Zbl