Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_2_a3, author = {S. A. Nazarov}, title = {Asymptotic expansions of eigenvalues of the {Steklov} problem in singularly perturbed domains}, journal = {Algebra i analiz}, pages = {119--184}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_2_a3/} }
S. A. Nazarov. Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains. Algebra i analiz, Tome 26 (2014) no. 2, pp. 119-184. http://geodesic.mathdoc.fr/item/AA_2014_26_2_a3/
[1] Mazja W. G., Nazarov S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Math. Monograph., 82, Akad.-Verlag, Berlin, 1991 | MR
[2] Gryshchuk S., Lanza de Cristoforis M., “Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach”, Math. Methods in the Appl. Sci., August, 2013, 1–17 | DOI
[3] Lanza de Cristoforis M., “Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach”, Analysis (Munich), 28:1 (2008), 63–93 | MR | Zbl
[4] Lanza de Cristoforis M., “Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach”, Rev. Mat. Complut., 25:2 (2012), 369–412 | DOI | MR | Zbl
[5] Lobo M., Pérez M., “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mecanique, 331 (2003), 303–317 | DOI | Zbl
[6] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauch. kniga, Novosibirsk, 2001
[7] Nazarov S. A., “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Probl. mat. anal., 25, Nauch. kniga, Novosibirsk, 2003, 99–188
[8] Lobo M., Nazarov S. A., Perez E., “Eigen-oscillations of contrasting non-homogeneous bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. Appl. Math., 70:3 (2005), 419–458 | DOI | MR | Zbl
[9] Nazarov S. A., “Asimptotika sobstvennykh znachenii zadachi Steklova na sochlenenii oblastei razlichnykh predelnykh razmernostei”, Zh. vychisl. mat. i mat. fiz., 52:11 (2012), 2033–2049 | Zbl
[10] John F., “On the motion of floating bodies. I”, Comm. Pure Appl. Math., 2:1 (1949), 13–57 ; “II”, Comm. Pure Appl. Math., 3:1 (1950), 45–101 | DOI | MR | DOI | MR
[11] Bonnet-Ben Dhia A.-S., Joly P., “Mathematical analysis of guided water-waves”, SIAM J. Appl. Math., 53:6 (1993), 1507–1550 | DOI | MR | Zbl
[12] Linton C. M., McIver P., “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45:1–2 (2007), 16–29 | DOI | MR | Zbl
[13] Kuznetsov N., Maz'ya V., Vainberg B., Linear water waves, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[14] Nazarov S. A., Taskinen J., “On essential and continuous spectra of the linearized water-wave problem in a finite pond”, Math. Scand., 106:1 (2010), 1–20 | MR
[15] Nazarov S. A., Taskinen J., “Radiation conditions at the top of a rotational cusp in the theory of water-waves”, ESAIM Math. Model. Numer. Anal., 45:5 (2011), 947–979 | DOI | MR | Zbl
[16] Nazarov S. A., “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Mat. sb., 199:12 (2008), 53–78 | DOI | MR | Zbl
[17] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. mat., 48:2 (1984), 347–371 | MR | Zbl
[18] Kamotskii I. V., Nazarov S. A., “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Tr. SPb. mat. o-va, 6, 1998, 151–212 | MR
[19] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962
[20] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[21] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR
[22] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl
[23] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, GIIL, M., 1958
[24] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M., 1962 | MR
[25] Kondratev V. A., “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differents. uravneniya, 6:10 (1970), 1831–1843
[26] Mazya V. G., Plamenevskii B. A., “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekhanike sploshnykh sred i rodstvennym problemam analiza, v. 1, Metsniereba, Tbilisi, 1973, 171–181
[27] Mazya V. G., Plamenevskii B. A., “Shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami na granitse”, Differents. uravneniya s chastnymi proizvodnymi, Tr. semin. S. L. Soboleva, 2, Izd-vo SO AN SSSR, Novosibirsk, 1978, 69–102 | MR
[28] Nazarov S. A., Plamenevskii B. A., “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno gladkoi granitsei”, Tr. Leningr. mat. o-va, 1, 1990, 174–211 | MR
[29] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[30] Nazarov S. A., “Vyvod variatsionnogo neravenstva dlya formy malogo prirascheniya treschiny otryva”, Mekh. tv. tela, 1989, no. 2, 152–160
[31] Campbell A., Nazarov S. A., “Asymptotics of eigenvalues of a plate with small clamped zone”, Positivity, 5:3 (2001), 275–295 | DOI | MR | Zbl
[32] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[33] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 1. Zadacha v konuse”, Sib. mat. zh., 22:4 (1981), 142–163 | MR | Zbl
[34] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 2. Zadacha v ogranichennoi oblasti”, Sib. mat. zh., 22:5 (1981), 132–152 | MR | Zbl
[35] Arutyunyan N. Kh., Nazarov S. A., “Ob osobennostyakh funktsii napryazheniya v uglovykh tochkakh poperechnogo secheniya skruchivaemogo sterzhnya s tonkim usilivayuschim pokrytiem”, Prikl. mat. i mekh., 47:1 (1983), 122–132 | MR
[36] Caloz G., Costabel M., Dauge M., Vial G., “Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer”, Asymptot. Anal., 50:1–2 (2006), 121–173 | MR | Zbl
[37] Nazarov S. A., “Lokalizatsiya okolo uglovoi tochki pervoi sobstvennoi funktsii zadachi Dirikhle v oblasti s tonkim okaimleniem”, Sib. mat. zh., 52:2 (2011), 350–370 | MR | Zbl
[38] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shk., 1977 | MR
[39] Mazya V. G., Nazarov S. A., “Ob osobennostyakh reshenii zadachi Neimana v konicheskoi tochke”, Sib. mat. zh., 30:3 (1989), 52–63 | MR
[40] Ursell F., “Trapping modes in the theory of surface waves”, Proc. Cambridge Philos. Soc., 47 (1951), 347–358 | DOI | MR | Zbl
[41] Ursell F., “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 18 (1988), 495–503 | MR
[42] Nazarov S. A., “Dostatochnye usloviya poyavleniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Zap. nauch. semin.POMI, 369, 2009, 202–223 | MR
[43] Cardone G., Durante T., Nazarov S. A., “Water-waves modes trapped in a canal by a near-surface rough body”, ZAMM Z. Angew. Math. Mech., 90:12 (2010), 983–1004 | DOI | MR | Zbl
[44] Nazarov S. A., “Lokalizovannye poverkhnostnye volny v periodicheskom sloe tyazheloi zhidkosti”, Prikl. mat. i mekh., 75:2 (2011), 338–351 | MR | Zbl
[45] Nazarov S. A., Sokolowski J., “Shape sensitivity analysis of eigenvalues revisited”, Control Cybernet., 37:4 (2008), 999–1012 | MR | Zbl
[46] Laurain A., Nazarov S. A., Sokolowski J., “Singular perturbations of curved boundaries in dimension three. The spectrum of the Neumann Laplacian”, Z. Anal. Anwend., 30:2 (2011), 145–180 | DOI | MR | Zbl