Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_2_a0, author = {P. D. Andreev}, title = {The proof of {Busemann} conjecture for $G$-spaces with non-positive curvature}, journal = {Algebra i analiz}, pages = {1--20}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_2_a0/} }
P. D. Andreev. The proof of Busemann conjecture for $G$-spaces with non-positive curvature. Algebra i analiz, Tome 26 (2014) no. 2, pp. 1-20. http://geodesic.mathdoc.fr/item/AA_2014_26_2_a0/
[1] Busemann H., Metric methods in Finsler geometry and in the foundations of geometry, Ann. of Math. Stud., 8, Princeton Univ. Press, Princeton, NJ, 1942 | MR | Zbl
[2] Busemann H., “On spaces in which two points determine a geodesic”, Trans. Amer. Math. Soc., 54 (1943), 171–184 | DOI | MR | Zbl
[3] Buzeman G., Geometriya geodezicheskikh, Fizmatlit, M., 1962 | MR
[4] Krakus B., “Any $3$-dimensional $G$-space is a manifold”, Bull. Acad. Polon. Sci., 16 (1968), 737–780 | MR
[5] Thurston P., “4-dimensional Busemann $G$-spaces are 4-manifolds”, Differential. Geom. Appl., 6:3 (1996), 245–270 | DOI | MR | Zbl
[6] Berestovskii V. N., “Prostranstva Buzemana ogranichennoi sverkhu krivizny po Aleksandrovu”, Algebra i analiz, 14:5 (2002), 3–18 | MR | Zbl
[7] Busemann H., “Spaces with non-positive curvature”, Acta Math., 80 (1948), 259–310 | DOI | MR
[8] Alexander S., Bishop R., “The Hadamard–Cartan theorem in locally convex metric spaces”, Enseign. Math., 36:3–4 (1990), 309–320 | MR | Zbl
[9] Berestovskii V. N., “K probleme konechnomernosti $G$-prostranstva Buzemana”, Sib. mat. zh., 18:1 (1977), 219–221 | MR
[10] Berestovskiǐ V. N., Halverson D. M., Repovš D., “Locally $G$-homogeneous Busemann $G$-spaces”, Differential Geom. Appl., 29:3 (2011), 299–318 | DOI | MR | Zbl
[11] Papadopoulos A., Metric spaces, convexity and nonpositive curvature, IRMA Lectures Math. Theor. Phis., 6, EMS, Zürich, 2005 | MR
[12] Gelander T., Karlsson A., Margulis G., “Superrigidity, generalized harmonic maps and uniformly convex spaces”, Geom. Func. Anal., 17:5 (2008), 1524–1550 | DOI | MR | Zbl
[13] Andreev P., “Geometric constructions in the class of Busemann nonpositively curved spaces”, J. Math. Phys. Anal. Geom., 5:1 (2009), 25–37 | MR
[14] Rinow W., Die innere Geometrie der metrischen Räume, Grundlehren Math. Wiss., 105, Springer-Verlag, Berlin, 1961 | MR | Zbl
[15] Kleiner B., “The local structure of length spaces with curvature bounded above”, Math. Z., 231:3 (1999), 409–456 | DOI | MR | Zbl
[16] Andreev P. D., “Zadacha A. D. Aleksandrova dlya prostranstv nepolozhitelnoi krivizny v smysle Buzemana”, Izv. vuzov. Mat., 2010, no. 9, 10–35 | MR | Zbl
[17] Zorich V. A., Matematicheskii analiz, Ch. II, Nauka, M., 1984 | MR | Zbl
[18] Aleksandrov P. S., Vvedenie v teoriyu razmernosti, Nauka, M., 1973
[19] Gurevich V., Volmen G., Teoriya razmernosti, GIIL, M., 1948