The proof of Busemann conjecture for $G$-spaces with non-positive curvature
Algebra i analiz, Tome 26 (2014) no. 2, pp. 1-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2014_26_2_a0,
     author = {P. D. Andreev},
     title = {The proof of {Busemann} conjecture for $G$-spaces with non-positive curvature},
     journal = {Algebra i analiz},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_2_a0/}
}
TY  - JOUR
AU  - P. D. Andreev
TI  - The proof of Busemann conjecture for $G$-spaces with non-positive curvature
JO  - Algebra i analiz
PY  - 2014
SP  - 1
EP  - 20
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_2_a0/
LA  - ru
ID  - AA_2014_26_2_a0
ER  - 
%0 Journal Article
%A P. D. Andreev
%T The proof of Busemann conjecture for $G$-spaces with non-positive curvature
%J Algebra i analiz
%D 2014
%P 1-20
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_2_a0/
%G ru
%F AA_2014_26_2_a0
P. D. Andreev. The proof of Busemann conjecture for $G$-spaces with non-positive curvature. Algebra i analiz, Tome 26 (2014) no. 2, pp. 1-20. http://geodesic.mathdoc.fr/item/AA_2014_26_2_a0/

[1] Busemann H., Metric methods in Finsler geometry and in the foundations of geometry, Ann. of Math. Stud., 8, Princeton Univ. Press, Princeton, NJ, 1942 | MR | Zbl

[2] Busemann H., “On spaces in which two points determine a geodesic”, Trans. Amer. Math. Soc., 54 (1943), 171–184 | DOI | MR | Zbl

[3] Buzeman G., Geometriya geodezicheskikh, Fizmatlit, M., 1962 | MR

[4] Krakus B., “Any $3$-dimensional $G$-space is a manifold”, Bull. Acad. Polon. Sci., 16 (1968), 737–780 | MR

[5] Thurston P., “4-dimensional Busemann $G$-spaces are 4-manifolds”, Differential. Geom. Appl., 6:3 (1996), 245–270 | DOI | MR | Zbl

[6] Berestovskii V. N., “Prostranstva Buzemana ogranichennoi sverkhu krivizny po Aleksandrovu”, Algebra i analiz, 14:5 (2002), 3–18 | MR | Zbl

[7] Busemann H., “Spaces with non-positive curvature”, Acta Math., 80 (1948), 259–310 | DOI | MR

[8] Alexander S., Bishop R., “The Hadamard–Cartan theorem in locally convex metric spaces”, Enseign. Math., 36:3–4 (1990), 309–320 | MR | Zbl

[9] Berestovskii V. N., “K probleme konechnomernosti $G$-prostranstva Buzemana”, Sib. mat. zh., 18:1 (1977), 219–221 | MR

[10] Berestovskiǐ V. N., Halverson D. M., Repovš D., “Locally $G$-homogeneous Busemann $G$-spaces”, Differential Geom. Appl., 29:3 (2011), 299–318 | DOI | MR | Zbl

[11] Papadopoulos A., Metric spaces, convexity and nonpositive curvature, IRMA Lectures Math. Theor. Phis., 6, EMS, Zürich, 2005 | MR

[12] Gelander T., Karlsson A., Margulis G., “Superrigidity, generalized harmonic maps and uniformly convex spaces”, Geom. Func. Anal., 17:5 (2008), 1524–1550 | DOI | MR | Zbl

[13] Andreev P., “Geometric constructions in the class of Busemann nonpositively curved spaces”, J. Math. Phys. Anal. Geom., 5:1 (2009), 25–37 | MR

[14] Rinow W., Die innere Geometrie der metrischen Räume, Grundlehren Math. Wiss., 105, Springer-Verlag, Berlin, 1961 | MR | Zbl

[15] Kleiner B., “The local structure of length spaces with curvature bounded above”, Math. Z., 231:3 (1999), 409–456 | DOI | MR | Zbl

[16] Andreev P. D., “Zadacha A. D. Aleksandrova dlya prostranstv nepolozhitelnoi krivizny v smysle Buzemana”, Izv. vuzov. Mat., 2010, no. 9, 10–35 | MR | Zbl

[17] Zorich V. A., Matematicheskii analiz, Ch. II, Nauka, M., 1984 | MR | Zbl

[18] Aleksandrov P. S., Vvedenie v teoriyu razmernosti, Nauka, M., 1973

[19] Gurevich V., Volmen G., Teoriya razmernosti, GIIL, M., 1948