Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_1_a7, author = {Ph. Charpentier and Y. Dupain}, title = {Extremal bases, geometrically separated domains and applications}, journal = {Algebra i analiz}, pages = {196--269}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_1_a7/} }
Ph. Charpentier; Y. Dupain. Extremal bases, geometrically separated domains and applications. Algebra i analiz, Tome 26 (2014) no. 1, pp. 196-269. http://geodesic.mathdoc.fr/item/AA_2014_26_1_a7/
[1] Ahn H., Cho S., “On the mapping properties of the Bergman projection on pseudoconvex domains with one degenerate eigenvalue”, Complex Variable Theory Appl., 39:4 (1999), 365–379 | DOI | MR | Zbl
[2] Bruna J., Charpentier Ph., Dupain Y., “Zero varieties for the Nevanlinna class in convex domains of finite type in $\mathbb C^n$”, Ann. of Math., 147:2 (1998), 391–415 | DOI | MR | Zbl
[3] Bloom T., “On the contact between complex manifolds and real hypersurfaces in $\mathbb C^3$”, Trans. Amer. Math. Soc., 263:2 (1981), 515–529 | MR | Zbl
[4] Catlin D., “Subelliptic estimates for $\bar\partial$-Neumann problem on pseudoconvex domains”, Ann. Math. (2), 126:1 (1987), 131–191 | DOI | MR | Zbl
[5] Catlin D., “Estimates of invariant metrics on pseudoconvex domains of dimension two”, Math. Z., 200:3 (1989), 429–466 | DOI | MR | Zbl
[6] Charpentier P., Dupain Y., “Une estimation des coefficients tangents d'un courant positif fermé dans un domaine de $\mathbb C^3$”, Publ. Mat., 36:1 (1992), 319–349 | DOI | MR | Zbl
[7] Charpentier P., Dupain Y., “Estimates for the Bergman and Szegö projections for pseudo-convex domains of finite type with locally diagonalizable Levi form”, Publ. Mat., 50:2 (2006), 413–446 | DOI | MR | Zbl
[8] Charpentier P., Dupain Y., “Geometry of pseudo-convex domains of finite type with locally diagonalizable Levi form and Bergman kernel”, J. Math. Pures Appl., 85:1 (2006), 71–118 | DOI | MR | Zbl
[9] Der-Chen Chang, Grellier S., “Estimates for the Szegö kernel on decoupled domains”, J. Math. Anal. Appl., 187:2 (1994), 628–649 | DOI | MR | Zbl
[10] Cho S., “Boundary behavior of the Bergman kernel function on some pseudoconvex domains in $\mathbb C^n$”, Trans. Amer. Math. Soc., 345:2 (1994), 803–817 | MR | Zbl
[11] Cho S., “Estimates of the Bergman kernel function on certain pseudoconvex domains in $\mathbb C^n$”, Math. Z., 222:2 (1996), 329–339 | DOI | MR | Zbl
[12] Cho S., “Estimates of invariants metrics on pseudoconvex domains with comparable Levi form”, J. Math. Kyoto Univ., 42:2 (2002), 337–349 | MR | Zbl
[13] Cho S., “Estimates of the Bergman kernel function on pseudoconvex domains with comparable Levi form”, J. Korean Math. Soc., 39:3 (2002), 425–437 | DOI | MR | Zbl
[14] Cho S., “Boundary behavior of the Bergman kernel function on pseudoconvex domains with comparable Levi form”, J. Math. Anal. Appl., 283:3 (2003), 386–397 | DOI | MR | Zbl
[15] Christ M., “Regularity peoperties of the $\bar\partial_b$ equation on weakly pseudoconvex CR manifold of dimension 3”, J. Amer. Math. Soc., 1:3 (1988), 587–646 | MR | Zbl
[16] Conrad M., Anisotrope optimale Pseudometriken für lineal konvex Gebeite von endlichem Typ (mit Anwendungen), PhD Thesis, Bergische Universität-GHS Wuppertal, 2002
[17] D'Angelo J. P., “Real hypersurfaces, orders of contact, and applications”, Ann. Math., 115:3 (1982), 615–637 | DOI | MR
[18] Derridj M., “Régularité hölderienne pour $\square_b$, sur des hypersurfaces de $\mathbb C^n$, à forme de Levi décomposable en blocs”, J. Geom. Anal., 9:4 (1999), 627–652 | DOI | MR | Zbl
[19] Diederich K., Fornaess J. E., “Support functions for convex domains of finite type”, Math. Z., 230:1 (1999), 145–164 | DOI | MR | Zbl
[20] Diederich K., Fornaess J. E., “Lineally convex domains of finite type: holomorphic support functions”, Manuscripta Math., 112:4 (2003), 403–431 | DOI | MR | Zbl
[21] Diederich K., Fischer B., “Hölder estimates on lineally convex domains of finite type”, Michigan Math. J., 54:2 (2006), 341–452 | DOI | MR
[22] Fefferman C. L., Kohn J. J., “Hölder estimates on domains of complex dimension two and on three dimensional CR manifold”, Adv. in Math., 69:2 (1988), 233–303 | DOI | MR
[23] Fefferman C. L., Kohn J. J., Machedon M., “Hölder estimates on CR manifold with a diagonalizable Levi form”, Adv. Math., 84:1 (1990), 1–90 | DOI | MR | Zbl
[24] Gay R., Sebbar A., “Division et extension dans l'algèbre $A^\infty(\Omega)$ d'un ouvert pseudoconvexe à bord lisse de $\mathbb C^n$”, Math. Z., 189:3 (1985), 421–447 | DOI | MR | Zbl
[25] Hefer T., “Extremal bases and Hölder estimates for $\bar\partial$ on convex domains of finite type”, Michigan Math. J., 52:3 (2004), 573–602 | DOI | MR | Zbl
[26] Herbort G., “Logarithmic growth of the Bergman kernel for weakly pseudoconvex domains in $\mathbb C^n$ of finite type”, Manuscripta Math., 45:1 (1983), 69–76 | DOI | MR | Zbl
[27] Kang H., “An approximation theorem for Szegö kernels and applications”, Michigan Math. J., 37:3 (1990), 447–458 | DOI | MR | Zbl
[28] Kerzman N., “The Bergman kernel function. Differentiability at the boundary”, Math. Ann., 195 (1972), 149–158 | DOI | MR
[29] Kiselman C. O., “A differential inequality characterizing weak lineal convexity”, Math. Annalen, 311:1 (1998), 1–10 | DOI | MR | Zbl
[30] Kohn J. J., Nirenberg L., “Non coercive boundary value problems”, Comm. Pure Appl. Math., 18 (1965), 443–492 | DOI | MR | Zbl
[31] Koenig K. D., “On maximal Sobolev and Hölder estimates for the tangential Cauchy–Riemann operator and boundary Laplacian”, Amer. J. Math., 124:2 (2002), 129–197 | DOI | MR | Zbl
[32] Koenig K. D., “Comparing the Bergman and Szegö projections on domains with subelliptic boundary Laplacian”, Math. Ann., 339:3 (2007), 667–693 | DOI | MR | Zbl
[33] Kohn J. J., “Estimates for $\bar\partial_b$ on pseudoconvex CR manifolds”, Proc. Sympos. Pure Math., 43, Amer. Math. Soc., Providence, RI, 1985, 207–217 | DOI | MR
[34] Machedon M., “Szegö kernels on pseudoconvex domains with one degenerate eigenvalue”, Ann. of Math. (2), 128:3 (1988), 619–640 | DOI | MR | Zbl
[35] McNeal J., “Boundary behavior of the Bergman kernel function in $\mathbb C^2$”, Duke Math. J., 58:2 (1989), 499–512 | DOI | MR | Zbl
[36] McNeal J., “Local geometry of decoupled pseudoconvex domains”, Complex analysis (Wuppertal, 1991), Aspekts Math., 1, Vieweg, Braunschweig, 1991, 223–230 | DOI | MR
[37] McNeal J., “Estimates on Bergman kernels of convex domains”, Adv. Math., 109:1 (1994), 108–139 | DOI | MR | Zbl
[38] McNeal J., “Uniform subelliptic estimates on scaled convex domains of finite type”, Proc. Amer. Math. Soc., 130:1 (2002), 39–47 | DOI | MR | Zbl
[39] McNeal J. D., Stein E. M., “Mapping properties of the Bergman projection on convex domains of finite type”, Duke Math. J., 73:1 (1994), 177–199 | DOI | MR | Zbl
[40] McNeal J. D., Stein E. M., “The Szegö projection on convex domains”, Math. Z., 224:4 (1997), 519–553 | DOI | MR | Zbl
[41] Nagel A., Rosay J. P., Stein E. M., Wainger S., “Estimates for the Bergman and Szegö kernels in $\mathbb C^2$”, Annals of Math. (2), 129:1 (1989), 113–147 | DOI | MR
[42] Nagel A., Stein E., Wainger S., “Balls and metrics defined by vectors fields: basic properties”, Acta Math., 155:1–2 (1985), 103–147 | DOI | MR | Zbl